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SUMMARY 

 

Bone formation is a complex physiological process which is orchestrated by 

multiple microenvironmental cues such as soluble factors, cell-cell interactions and the 

extracellular matrix. Integrins are heterodimeric transmembrane receptors consisting of α 

and β subunits which mediate cell interactions with the extracellular matrix. Beta 1 

integrins encompass the majority of integrins and represent the main integrin binding 

partners of collagen I, the most abundant extracellular matrix component of bone. The 

central goals of this dissertation project were to elucidate the role of β1 integrins on bone 

development and healing in vivo, and to design biomimetic α2β1 integrin-specific 

polyethylene glycol hydrogels to enhance bone healing within segmental bone defects. 

Because global β1 knockout mice are embryonically lethal, in order to study the 

role of β1 integrins in vivo, we used the Cre-Lox system to generate mice with 

conditional beta 1 integrin deletions in osteolineage cells at three stages: (1) mesodermal 

cells [under Twist 2/Dermo 1], (2) osteoprogenitors [under the osterix promoter] and (3) 

mature osteoblasts and osteocytes [under the osteocalcin promoter]. We found that 

β1 integrin deletion in mesodermal cells severely impaired pre-natal skeletal 

mineralization, particularly in the calvarium, and also resulted in late-stage embryonic 

lethality. In contrast, β1 integrin deletion in pre-osteoblasts resulted in viable but runted 

mice with decreased cranial mineralization, tooth defects, impaired femur development 

and some perinatal mortality. Finally, mice with β1 integrin null osteoblasts and 

osteocytes displayed very mild bone phenotypes with no change in femur fracture healing 

capacity. Taken together, these results suggest that β1 integrins play an important role in 
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the early bone formation process but are not essential for the function of mature 

osteoblasts and osteocytes. 

We also sought to engineer a biomimetic bone graft substitute by incorporating 

the following two bioactive components into a matrix metalloproteinase (MMP)-sensitive 

synthetic polyethylene glycol (PEG) hydrogel: (1) the collagen I-mimetic triple-helical 

synthetic ligand GFOGER, which specifically binds to the pro-osteogenic α2β1 integrin, 

and (2) recombinant human bone morphogenetic protein 2 (rhBMP-2). We synthesized 

PEG hydrogels incorporating GFOGER or the commonly used non-integrin selective 

adhesive peptide, RGD,  in equimolar densities and studied hMSC differentiation 

responses to each of these surfaces. We then examined the effects of treating murine 

radial segmental defects with either GFOGER functionalized PEG-MAL hydrogels or 

GFOGER gels which also incorporated a low dose of rhBMP-2. Our data indicated that 

GFOGER hydrogels enhanced bone healing compared to empty defects and that 

incorporating low dose rhBMP-2 in GFOGER gels further improved bone formation. We 

evaluated the roles of the GFOGER ligand and the MMP-sensitive crosslinker, 

GCRDVPMSMRGGDRCG (VPM), in this response by comparing bone formation in 

defects treated with non-degradable hydrogels, degradable hydrogels lacking the 

GFOGER ligand, and in defects treated with degradable GFOGER hydrogels. Minimal 

bone formation occurred in response to PEG hydrogels which were not functionalized 

with any adhesive ligand and there was no bone formation in non-degradable PEG 

hydrogels, indicating that adhesive function and degradability are essential to bone 

regeneration in response to GFOGER hydrogels. Our examination of rhBMP-2 dose 

response within GFOGER hydrogels suggested that low 0.02mg/ml (0.03 μg) dose was 
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sufficient for robust healing, but that the medium 0.04 mg/ml (0.06 μg) dose increased 

bone volume and mineral density within the defect compared to the low dose. The high 

0.2 mg/ml (0.3 μg) BMP-2 dose induced less bone formation within the defect than the 

medium dose and altered the structure of the ulna so that it encircled the radius and fused 

with the radius. FMT analysis  and in vitro BMP release assays revealed that GFOGER 

hydrogels provided sustained release of rhBMP-2. Finally, we evaluated the bone 

regeneration capacity of low dose rhBMP-2 delivery from GFOGER functionalized PEG 

hydrogels in comparison with collagen sponges, the clinical standard for BMP-2 delivery. 

We observed superior bone healing in response to GFOGER hydrogel treatment. In 

conclusion, our bioengineered integrin-specific hydrogel may be a promising bone graft 

substitute for the treatment of large bone defects. 
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CHAPTER 1: SPECIFIC AIMS 

INTRODUCTION 

 Skeletal development and bone healing are complex processes involving multiple 

microenvironmental cues including extracellular matrix-integrin interactions. Integrins 

mediate important cell functions such as survival, adhesion, proliferation, migration and 

differentiation. The β1 integrin sub-family of integrins encompasses 12 out of 24 known 

integrins and primarily mediate cell adhesion to collagen I, the major ECM component of 

bone. β1 integrins, especially α2β1 integrins and α5β1 are highly expressed in 

mesenchymal stem cells and osteoprogenitors and are implicated in in vitro osteoblastic 

differentiation and mineralization
1-10

. Despite significant in vitro evidence that β1 

integrins play a crucial role in differentiation, in vivo perturbations of β1 integrins have 

yielded contradictory results as some conditional β1 integrin deletions have exhibited no 

skeletal phenotype
11, 12

, and dominant negative mutations have displayed only mild 

skeletal phenotypes
13

. Additionally, in the orthopedic biomaterials field, most ECM-

mimetic or bioadhesive strategies have not targeted the previously mentioned pro-

osteogenic integrins, but focused primarily on using the short RGD tripeptide sequence 

which is a promiscuous integrin binding partner.  

 Over 1 million bone grafting, bone excision and fracture repair procedures are 

performed each year in the United States, at cost of approximately $5 billion 
14-17

. While 

autografts are the gold standard treatment for large bone defects, they are limited by 

availability and donor site pain. Growth factor treatments such as BMP therapy provide a 

promising alternative but are expensive and present clinical safety concerns, primarily 

due to delivery of BMPs at supraphysiological doses. Therefore, there remains an unmet 

clinical need for safer, more effective bone graft substitute biomaterials. Understanding 

the role of integrins on bone formation and exploiting desirable ECM-integrin 

interactions may enable modulation of host cells for improved orthopaedic therapies.  
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 The two main objectives of this project are to (1) elucidate the role of β1 integrins 

on bone formation in vivo and (2) engineer a biofunctionalized α2β1 integrin-specific 

PEG hydrogel to promote bone healing in segmental defects. Our hypothesis is that β1 

integrins play an important early role in bone formation in vivo. We also hypothesize that 

degradable PEG hydrogels modified with the α2β1 integrin-specific ligand GFOGER will 

promote bone healing within a critical-sized defect in vivo. These objectives will be 

accomplished through the completion of the following aims: 

SPECIFIC AIM I 

Define the role of beta 1 integrins on bone formation by inducing targeted β1 

integrin deletions in osteolineage cells at three stages of differentiation: 1) 

mesodermal lineage cells, 2) osteoprogenitor cells, and 3) mature osteoblasts/ 

osteocytes. 

 β1 integrins are believed to play an important role in bone formation as β1 

integrins are highly expressed in osteoblasts, osteoprogenitors and bone marrow stromal 

cells. Furthermore, blocking of multiple β1 integrins such as α2β1
2-6, 10

, α5β1
7-9

, α1β1 
4, 6

 

and α3β1 
8
 in these cells severely impairs in vitro osteogenic differentiation and 

mineralization. However, in vivo deletion or functional perturbation of β1 integrins 

results in only mild skeletal phenotypes. For example, transgenic mice expressing a 

dominant negative mutant form of the β1 integrin under the 1.8kb rat osteocalcin 

promoter display minor changes in skeletal development 
13, 18, 19

. These mild phenotypes 

include transient decreases in parietal thickness caused by increased osteoclast activity 

and altered canalicular structure in osteocytes
13

, decreased cancellous bone mass, 

decreased tibial curvature, and defective response to hindlimb unloading
18

, as well as 

transient decreases in tibial length, ash weight and dry weight, with no changes to femur 

mechanics
19

. β1 integrin deletion under the osteoblast-specific Col I 2.3kb promoter 
20

 

yielded no change in the skeletal structure of transgenic mice
11, 12

. Because β1 integrins 
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are essential for embryonic development, global β1 integrin knockout mice cannot be 

used for studies of in vivo β1 integrin function
21

. In order to evaluate the in vivo role of 

β1 integrins on bone formation, we will ablate β1 integrins in osteolineage cells at early, 

intermediate and late stages of differentiation by generating three different conditional 

knockout animals. Specifically, we will breed β1 integrin floxed mice with: 1) Twist 2 

Cre mice in order to delete β1 integrins in mesodermal lineage cells (Twist 2 Cre is 

expressed at E9.5 in brachial arches and somites and at E11.5 in mesenchymal 

condensations in mice), 2) Osterix Cre mice in order to ablate β1 integrins in 

osteoprogenitor cell (Osterix Cre mice express cre in committed osteoprogenitors in 

bones derived from both osteochondral and intramembranous ossification from E14.5 

onwards), and 3) Osteocalcin Cre mice to induce β1 integrin deletion in mature 

osteoblasts/ osteocytes. We hypothesize that β1 integrins play an important early role in 

skeletal development. 

SPECIFIC AIM II 

Evaluate the bone healing induced by GFOGER-modified PEG hydrogels 

incorporating low dose rhBMP-2 within segmental bone defects.  

 Although BMP therapies have shown promise as bone graft substitutes, due to 

limitations in release mechanisms of currently used biomaterial carriers, they are 

delivered at doses which far exceed physiological concentrations, resulting in high costs 

and potential complications
22-24

. Tissue engineering strategies for bone regeneration have 

largely focused on functionalizing materials with the promiscuous RGD peptide, which 

lacks of modulatory domains or other features found in native ECM ligands as well as 

specificity to pro-osteogenic integrins. Our group has previously engineered a collagen-

derived ligand, GFOGER, which mimics the triple helical structure of collagen to which 

cells adhere by specific binding of the 21 
25

 integrin, which is implicated in 

osteoblastic differentiation and mineralization. In this study, we engineered fully 
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synthetic, protease degradable PEG-maleimide hydrogels which incorporate the pro-

osteogenic GFOGER ligand and low-dose rhBMP-2. We hypothesized that by targeting 

the 21 integrin using the GFOGER adhesive ligand and by also providing sustained, 

‘on-demand’ release of low-dose rhBMP-2 we  could promote osteoblastic differentiation 

of host cells and promote bone regeneration in vivo. 

. 

SIGNIFICANCE 

 This work is significant and innovative because understanding β1 integrin effects 

on bone may have implications in regenerative medicine, and may further elucidate the 

mechanism of bone diseases which involve altered ECM interactions. Furthermore, the 

study of β1 integrins utilizes novel transgenic models to ablate β1 integrins in 

osteolineage cells at multiple different stages, whereas previous works have focused on 

conditional β1 integrin deletions in mature osteoblasts. The study of GFOGER/rhBMP-2 

hydrogels is innovative and significant because it will develop a completely synthetic, 

highly tunable biomaterial which focuses on engineering pro-osteogenic α2β1 integrin-

specificity in combination with controlled release of rhBMP-2 in order to induce robust 

bone regeneration. We expect that the development of GFOGER/low dose rhBMP-2 

hydrogels will represent a promising and clinically-relevant strategy for the treatment of 

large bone defects by promoting bone healing while also providing a potentially safe and 

low-cost therapy by decreasing the dose of rhBMP-2 required in order to bridge those 

defects. 
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CHAPTER 2: LITERATURE REVIEW
*
 

INTEGRINS 

 Integrins are a family of receptors which primarily mediate adhesion of cells to 

the extracellular matrix proteins such as collagen and fibronectin 
26

. Integrins are 

heterodimeric transmembrane proteins, each of which consists of  and  subunits. 

Currently, 8  and 18  integrin subunits are known, and these subunits associate non-

covalently to form 24 distinct  integrin combinations, each with unique binding 

characteristics (Figure. 2.1). X-ray crystallography analysis of integrin structure 

demonstrates a globular head connected to rod-like tails, and includes a flexible “knee” 

region which is involved in the activation state of the integrin. Integrins are capable of 

transducing signals in both directions across the cell membrane. For example, “outside-

in” signaling occurs when ECM ligation to integrins trigger intracellular signaling. 

Conversely, “inside-out” signaling takes place when intracellular signals modulate 

integrin activation state and thus change its affinity for its extracellular ECM ligand 
27

.  

Upon ECM binding to their extracellular domains, integrins cluster and their cytoplasmic 

domains associate with both cytoskeletal and intracellular signal transduction molecules. 

The association of integrins with the cellular signaling network initiates downstream 

signaling cascades such as the FAK, protein kinase C, Rac, Rho and MAPK pathways.  

_______________________________________ 

 

* Adapted from Shekaran, A., Garcia, A.J., Extracellular matrix-mimetic adhesive 

biomaterials for bone repair. J Biomed Mater Res A. 2011 96(1): 261-72
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The coordinated clustering of ECM ligands, integrins and cytoskeletal 

components forms macromolecular aggregates known as focal adhesions on the 

inside and outside of the cell membrane 
28

.  Because of the central roles of 

integrin-mediated adhesion to important cellular responses such as survival, 

growth, migration and differentiation 
27, 29, 30

, materials strategies which harness 

ECM-integrin interactions may play a key role in eliciting desired cellular 

responses in vivo. 

 

 

Figure 2.1. Integrin alpha and beta subunit combinations, binding specificity and 

expression in bone cells. Adapted from Hynes
26

. 

 

INTEGRINS IMPLICATED IN BONE FORMATION 

 The 1 sub-family integrins are the mostly highly expressed integrins in 

osteoblasts and the predominant mediators of cell adhesion in these cells
31

, although 
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osteoblasts may express the 3 and 5 subunits as well
32, 33

. α subunit expression data has 

been more inconsistent, with different combinations of 1, 2, 3, 4, 5 and v 

subunits having been detected by immunohistochemistry in human and rat bone
32-36

. The 

expression of the previously mentioned alpha subunits has also variously been 

determined by flow cytometry, immunoprecipitation, immunocytochemistry and 

Northern blot analysis on primary bone cultures
31-33, 37-40

.  Although reports of α subunit 

and integrin heterodimer expression in osteoblasts have sometimes been contradictory, 

multiple studies have identified the 11, 21, 31, 51, v3 integrins and their 

subunits in osteoblasts and bone cultures
31, 35, 39, 40

.  A few isolated studies have also 

found osteoblast expression of 61
40

, 81
8
, v1

37
  and v5

31
. Integrin expression 

studies on osteoprogenitor cells have shown similar profiles as osteoblasts, as Gronthos et 

al. reported the detection of 11, 21, 51, 61, v3 and v5 on STRO-1 

expressing human bone marrow stromal cells
6
 (Table 2.1, Figure. 2.1).  

 

Table 2.1. Composition of Bone Matrix. Composition of bone ECM. Itg – Integrins, Col 

– Collagen, HAP – Hydroxyapatite, Ca – Calcium, TSP – Thrombospondin. 

 



www.manaraa.com

8 

 

Beta 1 Integrins  

Alpha 2 Beta 1 

 The 21 integrin is implicated in pro-osteogenic pathways as it is highly 

expressed by osteoblast-like cells and is a primary adhesion receptor used by osteoblast-

like cells to adhere to collagen
31

, the main organic component of bone. Several studies 

indicate that the interaction of 21 integrin with collagen I is a crucial signal for 

osteoblastic differentiation and matrix mineralization
3, 4, 41-44

. For example, 21-

mediated adhesion of MC3T3-E1 pre-osteoblasts to collagen I activates Runx2/Cbfa1, a 

transcription factor that activates osteoblastic differentiation and matrix mineralization
3, 

44
. 21 ligation to collagen I also induces the  phosphorylation of focal adhesion 

kinase (FAK) and activation of extracellular signal-related kinase (ERK), which has 

been implicated in the regulation  of osteoblast-specific gene expression and matrix 

mineralization
43-46

.  Silencing of the 2 integrin subunit also blocked human osteoblast-

like cell osteocalcin expression in response to micron-scale structure of titanium 

substrates
10

. Furthermore, the collagen–21 integrin interaction promotes an 

osteoblastic phenotype in rat multipotent bone marrow cells
41, 42

. Schneider et al also 

showed that perturbation of the 21 integrin resulted in a 95% reduction 

mineralization in an osteosarcoma cell line
47

. 

Alpha 5 Beta 1 

The 51 integrin plays an important role in osteogenic differentiation as it is 

expressed by osteoblasts and osteoprogenitors, and promotes cell survival and matrix 

mineralization. 51 is stably expressed by osteoblasts during varying stages of 

osteogenesis
8
 and is also expressed by bone marrow stromal cells

48
. In addition, 51 

also mediates cell attachment to fibronectin as well as fibronectin assembly
48

. In mature 

cells, 51 binding is necessary for cell survival and a decrease in 51-fibronectin 
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interaction leads to osteoblast apoptosis
49

 through a caspase-dependent mechanism
50

. 

51 may also be involved in mechanical sensing by osteoblasts in vitro
51

. Blockade of 

the 51 integrin inhibits bone-specific gene expression and mineralization in rat 

calvarial cultures
7, 8

 and a rat osteosarcoma cell line
47

. In human mesenchymal stromal 

cells (hMSC), priming the 5 subunit with an agonist or overexpression of the 5 

subunit increases osteogenic capacity
9
, while 51 blockade decreases the alkaline 

phosphatase activity of cells cultured on fibronectin
52

. 

Beta 3 Integrins  

Alpha v Beta 3 

 While engagement of the v3 integrin may support cell adhesion, it has a 

negative effect on the proliferation and differentiation of osteoprogenitors. Blocking of 

v3 has been shown to enhance human MSC proliferation on fibronectin and 

fibronectin fragments
52

. v3 may also inhibit osteoblast differentiation and bone 

healing in vivo. A murine osteoblastic cell line made to overexpress human αvβ3 

showed an increase in proliferation rate but a decrease in matrix mineralization
53

. 

Furthermore, early fracture healing was accelerated in the tibiae of β3-null mice and 

twenty-three genes related to osteogenesis were upregulated at least two-fold in the 

β3-null mice
54

. v3 also mediates osteoclast attachment to bone matrix and plays a 

central role in bone resorption
55, 56

. 

GLOBAL BETA 1 INTEGRIN KNOCKOUTS 

 Global β1 integrin knockout results in post-implantation embryonic lethality. 

Mouse embryos with homozygous 1 integrin deletion had collapsed blastocoels at E4.5 

and displayed severe degeneration at E5.5 due to inner cell mass (ICM) failure 
21

. A 

separate study also confirmed that mice with homozygous null 1 integrin mutations 
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underwent normal development to the blastocyst stage and implanted into the uterine 

wall, but failed shortly thereafter 
57

. In contrast, mice which were heterozygous for the 

null β1 integrin gene were indistinguishable from wild-type littermates despite having 

low (50%) expression levels of β1 integrins in the liver, kidney and brain, when 

compared to wild-type mice. In chimeric embryos established using 1 integrin-null, lacZ 

positive embryonic stem (ES) cells, the 1 integrin-deficient cells failed to colonize the 

liver and spleen, but were found to be present at varying levels ranging from 2-25% in all 

other tissues such as the brain, lung, heart and skeletal muscle 
57

. However, it should be 

noted that in this study, the presence or distribution of 1 integrin null cells was not 

analyzed in bone tissue. Taken together, these studies demonstrate that β1 integrins are 

not required for pre-implantation development, but β1 integrin gene mutation results in a 

recessive lethal defect in mouse embryonic development from E5.5 onwards.  

CRE-LOX SYSTEM FOR CONDITIONAL GENE DELETIONS 

 Cre-lox recombination is a sophisticated technology for genetic manipulation 

which allows for site-specific recombinase activity and may be used to generate global 

knockouts, conditional (tissue specific) knockouts or reporters
58

. The Cre-lox system 

requires two components: 1) Cre recombinase, an enzyme which catalyzes recombination 

between two loxP sites, and 2) loxP (locus of crossing [x-ing] over in P1) sites, specific 

34 base pair (bp) sequences consisting of a core 8bp sequence, where recombination 

takes place, flanked by two palindromic 13bp sequences (Figure. 2.2 A). When 

transgenic methods are used to insert loxP sites in the same orientation flanking a target 

gene, the outcome of Cre-induced loxP site-specific recombination is excision of DNA 

between the loxP sites, and therefore, deletion of the target gene 
59

 (Figure. 2.2 B).  

Transgenic animals with genomes in which target genes are flanked by loxP sites are 

termed as ‘floxed’ for the target gene 
60, 61

. If mice which are floxed also also express 

Cre-recombinase under a tissue-specific promoter, gene deletions in those animals will be 
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restricted to tissues which express that marker (Figure. 2.2 C). Conditional knockout 

animals may be useful in studying genes for which the global knockout results in prenatal 

lethality. 

 

Figure 2.2. Cre-Lox recombination technology. (A) loxP, or locus of crossing [x-ing] at 

P1 sites are specific 34 base pair sequences. (B) The enzyme cre-recombinase will excise 

any DNA sequence flanked by loxP sites with the same orientation, and this method can 

be used for gene deletions. (C) Cre expression under a tissue-specific promoter combined 

with the presence of a floxed gene in the same transgenic animal can be used to create 

conditional, tissue-specific gene deletions. 
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BONE STRUCTURE AND FUNCTION 

Bone cells 

Bone formation is regulated by osteoblasts, osteoclasts and osteocytes. 

Osteoblasts are mononucleate bone-forming cells which secrete osteoid, the non-

mineralized component of bone extracellular matrix and then mineralize the matrix
62

. 

Osteoblasts are derived from mesenchymal cells found in the periosteum or bone 

marrow. Osteoblasts express markers such as osterix, alkaline phosphatase, bone 

sialoprotein, osteocalcin, osteopontin and osteonetcin. After depositing and mineralizing 

osteoid, osteoblasts become embedded in the matrix and differentiate into osteocytes. 

Osteoblasts may also undergo apoptosis or differentiate into bone lining cells
62

.  

Osteoclasts are multinucleate cells which form when cells of the 

macrophage/monocyte lineage fuse together. Osteoclasts are polarized cells which resorb 

bone by secreting H+ ions through the ruffled border into the underlying matrix
62

.  

Osteocytes are derived from matrix embedded osteoblast. Osteocytes occupy 

lacunae and extend filapodia through canaliculi in the matrix. Osteocytes have a limited 

capacity to synthesize or resorb matrix
62

. 

Bone Extracellular Matrix  

 In bone, the ECM consists of mainly of an organic phase known as osteoid which 

constitutes approximately 20% of bone mass, and a mineral phase (Table 1). The organic 

fraction of bone consists of over 90% type I collagen
63

, other minor collagens such as 

types III and V, and 5% non-collagenous proteins. The non-collagenous proteins in bone 

include osteocalcin, osteonectin, osteopontin, adhesion proteins such as fibronectin and 

vitronectin and proteoglycans such as versican, decorin and hyaluronan
64

. The mineral 

phase of bone is composed of hydroxyapatite, a calcium phosphate compound. The bone 
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matrix also sequesters growth factors, acting as a reservoir for soluble inductive signals 

such as bone morphogetenic proteins (BMPs).  

 Bone ECM serves both structural and biological functions, as the mineralized 

matrix accounts for the tissue’s mechanical properties while it also provides chemical 

cues which regulate bone cells and acts as a reservoir for ions. Collagen fibrils provide 

tensile strength to bone and are composed of collagen helices which assemble parallel to 

each other in a regular quarter-staggered pattern, creating 68 nm gaps between adjacent 

collagen molecules. Hydroxyapatite crystals, which make up 70% of bone, fill these gaps 

and are responsible for the compressive strength of bone
62

. Bone ECM also regulates 

bone cells by providing ECM-integrin bonds which enable the formation of adhesive 

structures and activate signaling pathways which regulate cell spreading, survival and 

differentiation. 

CRE TRANSGENIC LINES USED FOR BONE-RELATED STUDIES 

Twist 2/ Dermo 1-Cre 

 Twist 2/ Dermo 1 is a basic helix-loop-helix (BHLH) protein 
65

 and a member of 

the Twist family of proteins which regulate the development of mesenchymal lineage 

cells and contribute to skeletal patterning. Like Twist 1, Twist 2 is believed to function as 

an inhibitor of myogenic or osteoblastic
66

 differentiation in mesenchymal stem cells 

(MSCs) and maintains MSCs in an undifferentiated state. Cre expression in Twist 2-Cre 

mice is observed at E9.5 in somites and brachial arches. At E11.5, cre expression occurs 

within mesenchymal condensations during endochondral ossification
67

. At E16.5, Twist 

2-Cre expression is detected in chondrocytes within the femoral growth plate as well as in 

osteoblasts within the perichondrium, periosteum and endosteum
68

.  

Osterix-Cre 
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 Osterix is a zinc finger protein that is expressed in committed osteoprogenitors in 

bones formed by both osteochondral and intramembranous ossification. In osterix-cre 

transgenic mice, cre expression is detected from E14.5 onwards in embryos
67

. In 10 day 

old mice, cre expression in Osterix-cre mice is observed in the perichondrium, 

periosteum, primary spongiosa, and in some hypertrophic chondrocytes as well. In 

osterix-cre mice, the cre recombinase protein is fused with GFP. 

Osteocalcin-Cre 

 Cre expression under the 3.5kb human Osteocalcin promoter has been observed in 

osteoblasts and osteocytes in mouse calvaria from E17 onwards
69

. Cre-mediated gene 

deletion under the Osteocalcin promoter is observed in the calvaria, femur and vertebrae 

in Osteocalcin-Cre mice at the postnatal stage
70

.  

 

BONE DEVELOPMENT 

 Skeletogenesis takes place in two stages. In the first stage, known as skeletal 

patterning, aggregates of mesenchymal cells called mesenchymal condensations form at 

the sites of future skeletal formation
62

. BMP signaling may occur earlier than this stage 

and is required for mesenchymal condensation. In mice, by day E10.5, most of the 

mesenchymal condensations have formed
71

. During the second phase, these 

mesenchymal condensations differentiate to form chondrocytes, osteoblasts and 

osteoclasts in a finely controlled process. Bones are formed either by endochondral 

ossification or intramembranous ossification. Long bones form through endochondral 

ossification, in which bone formation proceeds through the development of a cartilage 

template which is undergoes vascular invasion of bone cells and is remodeled and 

replaced with bone. In contrast, intramembranous ossification takes place in the 
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development of flat bones such as the calvarium and part of the clavicle by direct 

differentiation of cells in the mesenchymal condensations to bone
71

.  

 During endochondral ossification, cells in mesenchymal condensations 

differentiate into chondrocytes and begin to secrete type II Collagen. However, cells at 

the periphery of mesenchymal condensations form the perichondrium. At approximately 

E13.5 non-proliferating elongated pre-hypertrophic chondrocytes form in the middle of 

the mesenchymal condensations. When pre-hypertrophic chondrocytes begin to express 

type X Collagen, they become hypertrophic chondrocytes. At this time, cells in the 

perichondrium begin to express Runx2, the master regulator of osteoblastic 

differentiation
72

, forming the bone collar, which is the precursor to cortical bone. While 

hypertrophic chondrocytes undergo apoptosis, vascular invasion occurs through the bone 

collar, carrying osteoblast lineage cells into the center of the cartilage mold, which is now 

known as the primary spongiosa. These osteoblast lineage cells will subsequently form 

osteoblasts and deposit bone matrix in what will become trabecular bone. At the ends of 

each long bone, proliferating and hypertrophic chondrocytes align into columns to form 

the growth plate, which is responsible for lengthening of the bone
73

.  

 Non-hypertrophic chondrocytes are regulated by FGFs (FGFR3 is an inhibitor of 

chondrocyte proliferation) 
74

, Wnt signaling
75

, as well as Ihh
76

. The Sox9 and Runx2 

transcription factors are important regulators of hypertrophic chondrocytes. Sox9 is 

necessary for differentiation of mesenchymal cells into proliferating non-hypertrophic 

chondrocytes
77

. Runx2 inhibits chondrocyte proliferation and hypertrophy
78

. 

 Osteoblast differentiation is regulated by several proteins including Runx2, Twist 

1 and 2, as well as Osterix. Runx-2 is required for osteoblast differentiation, and Runx2 

knockouts never develop mineralized skeletons, and die of respiratory distress as 

newborns
79

. Osterix is expressed downstream of Runx2 and is also required for 

osteoblastic differentiation 
80

. Twist 1 and Twist 2 are also implicated in skeletogenesis. 

Twist 1 haploinsufficiency causes a form of craniosynostosis
81

. Twist 1 and 2 inhibit 
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osteoblastic differentiation of Runx2 expressing cells between E10.5 and E14.5 in the 

cranium and appendicular skeleton respectively
66

. Surprisingly, conditional deletion of 

BMP-2 under the Prx-1 promoter (an osteochondroprogenitor marker) does not inhibit 

bone development, demonstrating that BMP-2 signaling is not required for bone 

development
82

. 

BONE FRACTURE HEALING 

 Bone fracture healing occurs through a complex interplay of multiple cell types 

and cellular processes which recapitulates bone development and results in scar-free bone 

regeneration. Fracture healing may proceed through a combination of endochondral 

ossification and intramembranous ossification and occurs in multiple stages: (1) initial 

injury/inflammation, (2) endochondral formation/ periosteal response, (3) primary bone 

formation/ cartilage resorption, (4) secondary bone formation/ coupled remodeling. 

 The initial injury/inflammation stage takes place from approximately 0 to 7 days 

post fracture and is marked by hematoma formation, inflammation and mesenchymal 

stem cell recruitment.  Inflammation takes place during the first 24 hours, following 

which osteoprogenitor cells are recruited to the fracture site from the periosteum, bone 

marrow and surrounding tissues
83

. Proteases such as MMP-2 and MMP-14
84

 and multiple 

pro-inflammatory cytokines are upregulated during the first 7 days including MCSF, ILa, 

IL1b, IL6, IL11, RANKL, OPG, TNFα, and TNFβ. Morphogens which are highly 

expressed during this stage are BMP-2, TGFβ1 and GDF8. BMP-2 is expressed in a two-

phase profile, peaking once at day 1 and decreasing to a minimum at day 7 before 

increasing steadily again, peaking more strongly at 21 days and then decreasing again 

from 21-28 days post-fracture 
85, 86

. It is noteworthy that BMP-2 is the only BMP which 

is highly expressed during this early stage. Although BMP-2 is not required for bone 

development, it is required for fracture healing as conditional BMP-2 knockout mice with 

mid-diaphyseal femur fractures do not form a callus even after 20 days
82

. Mice lacking 
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BMP-2 do not have any periosteal activation at day 3 post-fracture, which suggests that 

BMP-2 is a crucial mediator of the early fracture healing response. 

 The endochondral formation/ periosteal response takes place from approximately 

7 to 14 days post fracture. During this stage, cartilage formation, vascular ingrowth and 

intramembranous bone formation take place. Cartilage-related ECMs such as Col2a1, 

Col10a1 and aggrecan are highly expressed. Morphogens such as TGFβ2, TGFβ3, as well 

as BMP-4, BMP-5 and BMP-6, GDF5, GDF10 and Indian hedgehog (Ihh) begin to be 

expressed. In addition, MMP-2, and MMP-14, ADAMTS-4 and ADAMTS-15  

expression continue to increase while MMP-9, MMP-13 begin to be highly expressed 

during the endochondral formation stage
84

. 

 During the primary bone formation stage, at approximately 14-28 days post 

fracture, chondrocytes undergo apoptosis, bone cells are recruited to the fracture callus, 

neovascularization occurs and osteoclasts are recruited to resorb calcified cartilage. 

Bone-related ECM proteins such as bone sialoprotein (BSP), osteopontin (OPN), and all 

BMPs are upregulated during this stage.  

 Finally, during the secondary bone formation stage, which occurs 3 weeks after 

fracture, bone marrow is established, the calcified cartilage is resorbed by osteoclasts, 

and bone remodeling takes place in order to replace woven bone with lamellar bone.  

 

BONE GRAFTS AND CLINICAL NEED 

 Although bone is unique in its capacity for scar-free regeneration in adults, large 

bone defects that occur due to traumatic injury, bone deformities or tumor resection are 

clinically challenging, and may result in non-unions or delayed unions 
87

.  These non-

healing bone defects will require treatment with bone grafts, which are also commonly 

used in spinal fusions, foot and ankle fusions as well as for reconstructions during 

revision surgeries for joint replacements. Over 1 million bone grafting, bone excision and 
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fracture repair surgeries are performed annually in the US, at cost of approximately $5 

billion 
14-17

. The worldwide bone graft substitute market was valued at $1.9 billion in 

2010 and is predicted to reach over $3.3 billion in 2017. Currently used bone graft 

products as well as their limitations are described below. 

Autografts and Allografts 

 Autografts are currently the gold standard of treatment for non-healing bone 

defects, followed closely in number of procedures performed by allografts 
22

.  Together, 

autograft and allograft tissue account for approximately 90% of bone graft treatments 
88

. 

Autografts are usually harvested from the patients iliac crest, distal femur or proximal 

tibia, but these treatments suffer from limited supply as well as chronic pain or 

inflammation at the donor site 
22

. Although donor and cadaveric allografts are more 

readily available than autografts, they carry the risk of immune rejection or transferring 

viral or bacterial infection. While the risk of infection and immunogenicity may be 

minimized by tissue processing methods such as allograft freezing, freeze-drying, and 

ethylene oxide or gamma irradiation sterilization, these processes also decrease allograft 

osteogenicity due to the absence of viable cells and limit the ability of allografts to 

remodel 
22, 89-91

. 

Demineralized Bone Matrix  

 Demineralized bone matrix (DBM) is produced by acid extraction of
 
allografts 

and is clinically available in a range of forms such as injectable paste, granules, gel, 

putty, or strips. DBM preparations are osteoconductive due to the ECM left behind but 

may exhibit non-uniform osteoinductivity due to donor-to-donor variations as well as 

differences in storage, sterilization and processing methods used
16

.  Although DBM has 

demonstrated osteoinductive properties in
 
animal studies, there have been no randomized, 

controlled human studies involving the
 
use of DBM alone 

22
. It should be noted that 

DBM products with no added components are regulated as minimally modified human 
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tissue and therefore received clearance from the FDA without requiring evidence of 

comparable efficacy to autografts. Products which combine DBM with additives intended 

to improve ease of handling of the DBM product (e.g. DBM-based putty or pastes) are 

now regulated by the FDA as medical devices which require 510(k) clearance. DBM is 

widely used clinically as a ‘bone graft extender’ meaning that it is used in conjunction 

with an autograft, rather than as a replacement for autografts. 

Ceramics 

 Ceramics used as bone grafts include calcium phosphates (BioOss, Osteograf, 

Vitoss, ProOsteon, SRS, Biobon), calcium sulfates and bioglass (Biogran, PerioGlas). 

These materials generally provide some mechanical support and are osteoconductive, but 

not osteoinductive. Ceramics are therefore commonly used as carriers for other 

osteoinductive or bioactive agents such as collagen (Collagraft, Healos), BMPs or cells in 

composite constructs or as bone graft extenders 
16, 88

.  

 

Bone Morphogenetic Protein-Based Products  

 Although bone morphogenetic protein (BMP)-based bone grafts have emerged as 

promising alternatives to auto and allografts due to their potent bone induction effects, 

they are limited by high costs and serious safety concerns. Since 2002, bone graft 

substitutes using BMP-2 (Medtronic’s InFUSE) and BMP-7 (Stryker’s OP1) have been 

FDA approved for clinical use in the United States 
24, 92, 93

.  Medtronic’s BMP-2 product, 

InFUSE, was approved by the FDA for use in lumbar spinal fusions in conjunction with a 

titanium tapered spinal fusion cage (LT-CAGE Lumber Tapered Fusion Device) using 

the anterior lumber inter fusion (ALIF) surgical technique, which employs an abdominal 

approach.  InFUSE was also approved in 2004 for use in open tibial fractures and in 2007 

for sinus augmentations. Stryker Biotech’s BMP-7 product, OP-1 is approved for use in 

recalcitrant long bone non-unions and certain posterolateral lumbar spinal fusions under a 
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Humanitarian Device Exemption. Since Medtronic’s InFUSE became commercially 

available, Medtronic quickly become the market leader for bone graft substitutes, 

particularly for spinal fusions. The Journal of the American Medical Association (JAMA) 

reported that nationwide use of BMP-based bone grafts for spinal fusions rose from 

0.69% of all fusions in 2002 to 24.89% of all spinal fusions in 2006
94

. Medtronic now 

controls 44% of the global bone graft market, which is worth $2.5 billion. Medtronic also 

dominates the BMP bone graft market, accounting for 90% of sales. Medtronic’s BMP 

product, the InFUSE bone graft consists of lyophilized recombinant human BMP-2 

(rhBMP-2) which is reconstituted in sterile water at a 1.5 mg/ml concentration and 

applied to a scaffold manufactured from bovine type I Collagen (referred to as an 

absorbable collagen sponge, or ACS) prior to implantation. Despite the rapid increase in 

use of BMP products such as InFUSE as bone grafts since 2002, these products have 

important limitations. First, BMP therapy is extremely expensive; the cost of a single 

treatment kit for InFUSE may range from $2,500 to $,5000 
95

. Secondly, BMPs need to 

be administered at supraphysiological concentrations to stimulate bone growth in 

humans, raising concerns regarding excess bone growth outside the defect site as well as 

inflammatory and carcinogenic effects 
22-24

. Some of these safety concerns may be 

justified; Medtronic and the InFUSE bone graft have faced greater scrutiny in recent 

years with an editorial in a 2011 issue of the Spine Journal alleging that that spinal fusion 

surgeries using the InFUSE bone graft had severe and potentially life-threatening side 

effects which were not reported in the original Medtronic-sponsored clinical studies, and 

that many of the authors of these studies had more than $1 million in financial 

associations with Medtronic
96

. These side effects included ectopic bone formation in the 

spinal canal, radiculopathy, nerve injuries, retrograde ejaculation in males or other 

urogenital adverse events, and potentially lethal swelling of the neck and throat tissue 

following cervical spinal fusions
96

. While the Spine Journal review only addressed safety 

concerns on InFUSE use in spinal fusions, their findings highlight the general risks of 
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introducing extremely high doses of BMPs into patients using carriers without controlled 

release mechanisms. Therefore, there remains an unmet clinical need for cost-effective, 

safe and efficacious bone graft substitutes. 

ECM-MIMETIC BIOMATERIALS FOR ORTHOPAEDIC APPLICATIONS 

Full Length Natural ECM Polymers  

 Due to the important regulatory role that ECM molecules play on cellular 

responses in vivo, full-length ECM proteins have been studied as potential adhesive 

scaffolds for bone defect healing and implant integration. These ECM polymers include 

collagen
97-103

, fibrin
104-107

, hyaluronic acid
108-111

, decellularized matrix
112, 113

 as well as 

bone sialoprotein
114

 (Table 3). Methods used to functionalize titanium implants with 

ECM polymers include protein adsorption from solution
100, 110

, injection of protein 

solution into a porous implant
99

, dip-coating and covalent tethering
98

 and plasma 

spraying
111

. For the treatment of bone defects, ECM implants have been used in the form 

of crosslinked membranes
102

, sponges
103

, gels
105

, demineralized bone particles
112

 or cut 

pieces of small intestinal submucosa
113

. Although naturally derived ECM molecules have 

demonstrated some degree of success in selected studies,
97, 98, 113

 the widespread use of 

natural ECM macromolecules in orthopaedic applications has been hindered by several 

factors. First, full-length ECM polymers have low solubility, are costly to extract and 

purify in large quantities, suffer from batch-to-batch variation and potentially suffer from 

immunogenicity. Furthermore, it is challenging to modify, characterize and control the 

presentation of natural ECM biomaterials. 

ECM-Derived Adhesive Peptides/ Proteins  

 The above-mentioned limitations of full-length ECM molecules have spurred the 

use of ECM-derived peptides or recombinant fragments which incorporate the minimal 

functional sequence of their parent protein 
115

 in order to convey bioactivity to implant 
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materials. In contrast to ECM polymers, these peptides and protein fragments may be 

synthesized in larger quantities, immobilized on non-fouling surfaces at high densities, 

and may be tailored in composition for specific applications. While natural ECM proteins 

such as collagens and fibronectin are large macromolecules consisting of thousands of 

amino acids, only a few short peptide sequences within these polymers serve as integrin 

recognition and binding sequences which trigger downstream processes such as adhesion, 

signaling and spreading.  For example, in collagens I, II and III, cells bind to the 

GFOGER
116, 117

 peptide sequence, while in fibronectin, the RGD
118

, PHSRN
119

, 

REDV
120

, and LDV
121

 sequences are responsible for cell binding. As a result, short 

peptide sequences such as these, as well as ECM-derived protein fragment such as 

FNIII7-10, are used to biofunctionalize titanium surfaces and bone tissue engineering 

scaffolds
122

. Common peptide/protein fragment functionalization methods for titanium 

implants include simple adsorption or covalent immobilization onto titanium surfaces. 

Peptides may be presented on a non-fouling background by covalently tethering them to 

protein resistant polymer coatings such as polyethylene glycol
122, 123

. Peptide 

modification strategies for bone regeneration within defects include adsorption to 

polymer scaffolds
124

 or bone matrix
125

. 

Collagen-mimetic Peptides 

 GFOGER: The hexapeptide sequence Gly-Phe-Hyp-Gly-Glu-Arg (GFOGER) is 

found on residues 502–507 of the 1(I) chain of type I collagen and serves as the major 

recognition site for 21 integrin binding
117, 126, 127

. Our group engineered a Col I-

mimetic GFOGER containing peptide, GGYGGGPC(GPP)5GFOGER(GPP)5GPC, which 

recapitulates the triple helical tertiary structure of native collagen as an adhesive ligand 

for biomaterials. Surfaces presenting adsorbed or covalently immobilized GFOGER 

peptide support equivalent levels of 21 integrin-mediated adhesion of HT1080 

fibrosarcoma and MC3T3-E1 osteoblast-like cells as native collagen I
128

 and also 
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promote osteoblastic differentiation of MC3T3-E1 and primary bone marrow stromal 

cells in vitro
25, 129

. Furthermore, GFOGER enhances bone repair in vivo within rigorous 

critical-sized rat femur defect models without the delivery of cells or growth factors
130

. 

GFOGER-functionalized titanium implants also enhance implant integration in a rat 

cortical model by improving peri-implant bone formation and implant fixation to bone
25, 

129
. Surprisingly, an in vitro study by Hennessy et al. found that adsorption of a different 

triple-helical GFOGER sequence-containing peptide, GPC(GPP)5GFOGER(GPP)5GPC,  

did not improve human mesenchymal stem cell adhesion on hydroxyapatite disks
131

, 

although cells cultured on GFOGER-treated tissue culture plastic showed levels of 

adhesion and spreading equivalent to full-length collagen I. This result contradicts other 

studies by our group and others which indicate that triple-helical peptides containing the 

GFOGER sequence support robust cell adhesion
117, 127

 and differentiation
129

 and may 

possibly be due to low GFOGER adsorption to the hydroxyapatite disks or variations in 

the primary sequence of the GFOGER peptides used in these studies. 

 DGEA: The DGEA sequence has been suggested as the 21 recognition 

sequence in type I collagen
132

, although a different study failed to demonstrate 21 

mediated cell responses to DGEA
133

. Soluble DGEA peptide inhibits the osteoblastic 

phenotype of rat bone marrow stromal cells cultured on type I collagen. DGEA coated 

hydroxyapatite disks have promoted cell adhesion and upregulated osteoblast marker 

expression in mesenchymal stem cells in vitro
131

. However, surfaces modified with a 

CCGDGEAG peptide failed to support the adhesion of rat calvarial osteoblasts
134

.  

 P15: P15 is a synthetic 15-amino acid peptide derived from the 

(766)GTPGPQGIAGQRGVV(780) sequence found in the 1(I) chain of type I collagen 

135
. Several studies have demonstrated that P15 enhances cell adhesion, osteoblastic gene 

expression and mineralization on anorganic bone matrix (ABM) in vitro
136, 137

 and 

accelerates early bone formation in porcine
125

 and rat
138

 cranial defects. In a head-to-head 

comparison of DGEA and P15 coated hydroxyapatite disks implanted into rat tibiae, both 
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peptides improved new bone formation, but P15 failed to enhance bone implant 

contact
131

. P15 peptide-coated ABM has also been used in human periodontal osseous 

defects
139, 140

 resulting in better clinical outcomes than open flap debridement alone, and 

has also been used in a pilot clinical study for long-bone defects
141

. However, P15-coated 

ABM has not been compared with ABM alone in these human dental applications to 

determine the role of P-15 alone on the positive effects observed.  

RGD 

 RGD is an adhesive peptide sequence found in many ECM molecules including 

fibronectin, vitronectin, bone sialoprotein and osteopontin
142

. RGD can bind to multiple 

integrins such v3, v1, 81, v8, v6, v5 and IIb3. However, for certain 

integrins, binding to RGD is modulated by another sequence, such as the PHSRN 

synergy site for 51
119, 143

. Because RGD serves as a promiscuous binding sequence, 

many biomaterials have incorporated RGD as an adhesive ligand.  

 The application of linear RGD peptides onto implant surfaces has generally failed 

to enhance functional osseointegration as determined by bone-implant contact and 

mechanical fixation in several independent studies
122, 123, 144, 145

. In addition, Bellis and 

coworkers demonstrated a negative effect for RGD peptides in bone formation and 

osseointegration responses to hydroxyapatite implants
146

.  In contrast to these studies, 

Søballe and colleagues did report enhancements in osseointegration for implants 

presenting cyclic RGD peptides
147, 148

. However, other studies using cyclic RGD have 

also failed to show improvements in implant fixation in rat tibiae 
100

 and canine 

mandibles
149

.  Direct comparison among these contradictory studies is confounded by 

differences in the presence of a non-fouling polymer coating to prevent non-specific 

adsorption of plasma proteins, the animal model used, as well as implant surface finish 

(i.e., roughness). It is worth noting that two studies in which RGD was presented on 

titanium implants in a controlled fashion from non-fouling background coating 
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demonstrated no improvements in osseointegration
123, 150

, suggesting that RGD-

functionalization is not effective at enhancing implant integration.  Fewer RGD modified 

materials have been tested as bone grafts within defects, but in those studies, as with 

titanium implants as well, RGD does not appear to promote bone formation and repair in 

vivo
151

. 

Fibronectin-mimetic Peptides/Protein Fragments 

 Fibronectin contains both the RGD adhesion site as well as a PHSRN synergy 

site. 51 binds to RGD in the presence of PHSRN in fibronectin with a forty-fold 

increase in affinity compared to RGD alone
119

 . Each of these domains independently 

contributes little to binding, but, in combination, they synergistically bind to 51 to 

provide stable adhesion
143, 152

. In contrast, other integrins are unaffected by the synergy 

site and bind only to the RGD site within fibronectin  with a lower affinity than 51
153

. 

Many fibronectin-derived peptides or fragments designed for biomaterial applications 

therefore recapitulate this interaction between 51 and the RGD and PHSRN sites. 

 FNIII7-10: Our group has engineered a recombinant fragment of fibronectin, 

FNIII7-10, which encompasses the 7-10
th

 repeats of native fibronectin and binds 

specifically to the 51 integrin. FNIII7-10 enhances both osteoblast adhesion strength 

and differentiation in vitro 
150

, as well as implant osseointegration in a rat cortical model 

when compared to titanium implants modified with RGD at an equivalent molar surface 

density 
122

. Furthermore, a simple adsorbed coating this fragment exhibits improved bone 

apposition and mechanical fixation to bone when compared to full-length fibronectin as 

fibronectin domains with antagonistic effects are excluded from the fragment 
154

.  

 FNIII9*-10: Martino et al. investigated the osteogenic potential of human MSCs 

on surfaces and hydrogels functionalized with full-length fibronectin (FN), fibronectin 

fragments (FNIII9-10 and FNIII10) and a more 51-specific mutated fibronectin 

fragment (FNIII9*-10) and demonstrated that FNIII9*-10 and FNIII9-10 supported 
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higher MSC differentiation than FN. Interestingly, the level of osteoblastic differentiation 

for each fragment was correlated with its degree of binding specificity for the 51 

integrin (FNIII9*-10 > FNIII9-10 > FNIII10), which supports other studies suggesting 

that 51 engagement may enhance osteogenesis 
122, 150, 154

. 

 RGD-PHSRN: Synthetic peptides designed to co-present the RGD site and 

PHSRN synergy sites on the same molecule separated by polyglycine linkers result in 

increased adhesion and metabolic activity of primary rat calvarial osteoblasts 
155

 and 

human osteoblast-like cells 
156

 in vitro when compared to surfaces presenting RGD alone. 

Other ECM-derived Peptides  

 Other ECM-derived peptides which have been found to enhance osteoblast 

adhesion and differentiation in vitro include FHRRIKA which is derived from the heparin 

binding site of bone sialoprotein 
157-161

, KRSR, which is a heparin binding sequence 

found on multiple ECM proteins 
161-166

, the bone sialoprotein derived BSP(278-293) 
167

, 

the human vitronectin peptide HVP (351-359) 
168-171

, an osteopontin derived peptide 
172

, 

and a heparin binding peptide, HBP12 
173

.   
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CHAPTER 3: THE ROLE OF BETA 1 INTEGRINS IN BONE 

FORMATION DURING DEVELOPMENT 

ABSTRACT 

 Bone development, homeostatis, adaptation, and healing are regulated by multiple 

microenvironmental cues, including integrin signaling. β1 integrins are the most common 

integrins and represent the main integrin binding partners of collagen I, the major ECM 

component of bone. While a large body of in vitro research clearly demonstrates the 

importance of β1 integrins on mineralization, in vivo bone-specific perturbations of β1 

integrins in have demonstrated only mild bone phenotypes thus far. In our study, we 

conditionally deleted β1 integrins in osteolineage cells at three different stages of 

differentiation: (1) mesodermal cells under a Twist 2/Dermo 1 promoter, (2) pre-

osteoblasts under the Osterix promoter and (3) mature osteoblasts/osteocytes under the 

Osteocalcin promoter. We found that β1 integrin deletion in mesodermal cells severely 

impairs prenatal skeletal mineralization and is embryonically lethal. In contrast, β1 

integrin deletion in pre-osteoblasts resulted in viable but runted mice with decreased 

cranial mineralization, tooth defects and increased perinatal mortality. Finally, mice with 

β1 integrin null osteoblasts and osteocytes displayed very mild bone phenotypes and no 

change in femur biomechanics. Taken together, our data suggest that β1 integrins play an 

important role in early bone formation by regulating osteoprogenitor function but are not 

essential for the function of mature osteoblasts and osteocytes.  
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INTRODUCTION 

 Bone development, remodeling and bone healing are complex, dynamic processes 

which are regulated by the interaction of osteoblasts and osteoclasts with a variety of 

growth factors and extracellular matrix (ECM) molecules in their environment. Adhesion 

to ECM is primarily mediated by a family of receptors known as integrins, which also 

regulate crucial cell functions such as survival, migration and differentiation
174

. Integrins 

are a family of 24 different αβ heterodimeric receptors 
26

. β1 integrins are the largest sub-

family of integrins, as β1 integrins associate with 12 different α subunits 
26

. 

 β1 integrins are believed to play an important role in bone formation as β1 

integrins are highly expressed in osteoblasts, osteoprogenitors and bone marrow stromal 

cells. Furthermore, blocking of multiple β1 integrins such as α2β1 
2-6

, α5β1
7-9

, α1β1 
4, 6

 

and α3β1 
8
 in these cells severely impairs in vitro osteogenic differentiation and 

mineralization. In addition, β1 integrins may also regulate survival, as disruption of 

fibronectin- α5β1 interaction induces apoptosis in differentiated osteoblasts
49

. Although 

these in vitro data strongly suggests that β1 integrins play a crucial role in bone 

formation, in vivo deletion or functional perturbation of β1 integrins result in only mild 

skeletal phenoypes. For example, transgenic mice expressing a dominant negative mutant 

form of the β1 integrin under an osteocalcin promoter display normal bone development 

and only slightly altered responses to the mechanical loading environment
13, 18, 19

. 

Similarly, ablation of β1 integrin under the osteoblast-specific Col I 2.3kb promoter 
20

 

yielded no change in the skeletal structure of transgenic mice
11, 12

.  It should be noted that 

β1 integrins are essential for embryonic development and therefore, global β1 integrin 

knockout mice cannot be used for studies of in vivo β1 integrin function
21

.  

 We considered the possibility that the apparent contradiction between the in vitro 

and in vivo studies may be due to the timing of integrin deletion. We therefore 

hypothesized that β1 integrins play a crucial role in early bone development processes but 
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are not required for mineralization by fully differentiated osteoblasts. In order to 

separately address the roles of β1 integrins in early osteogenic differentiation and mature 

osteoblast function, we generated conditional knockout mice with β1 integrin deletion 

targeted to osteolineage cells at three different stages: (1) mesodermal cells by expressing 

cre recombinase under the Twist 2 (also known as Dermo 1) promoter (TW2-Cre) 
68

 

which is expressed at E9.5 in somites and branchial arches, (2) osteoprogenitor cells by 

expressing cre recombinase under the Osterix (Sp7) promoter (OSX-Cre) which is first 

expressed at E14.5  (3) mature osteoblasts and osteocytes by expressing cre recombinase 

under the Osteocalcin promoter (OCN-Cre) which is expressed from E17.5 onwards 
69

 

(Figure 3.1).  

 

Figure 3.1. Cre-mediated deletions of floxed genes are targeted to mesodermal lineage 

cells, osteoprogenitor cells and mature osteoblasts respectively inTW2-Cre, OSX-Cre and 

OCN-Cre transgenic mice.  
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METHODS 

Mouse crosses and genotyping 

 Homozygous β1 integrin floxed (itgβ1
fl/fl

) mice, B6;129-Itgb1
tm1Efu

/J, as well as 

TW2-Cre mice, B6.129X1-Twist2
tm1.1(cre)Dor

/J, and OSX-Cre mice, B6.Cg-Tg(Sp7-

tTA,tetO-EGFP/cre)1Amc/J were purchased from Jackson Laboratories, and OCN-Cre 

mice were kindly provided by Thomas Clemens. Itgβ1
fl/fl

 mice were mated with Tw2-

Cre, Osx-Cre or OCN-Cre mice to generate mice with β1 integrin deletions under the 

respective promoters: itgβ1
fl/fl

-TW2-Cre, itgβ1
fl/fl

-OSX-Cre and itgβ1
fl/fl

-OCN-Cre. In all 

in vivo studies, these conditional knockout mice were compared with littermates with a 

wild-type phenotype (itgβ1
fl/fl

 or itgβ1
fl/+

) or with heterozygous conditional knockout 

genotype. Mice were tail clipped after weaning and genotyped by PCR analysis of 

genomic DNA extracted using the Qiagen DNeasy Kit. All protocols were approved by 

the Institutional Animal Care and Use Committee in adherence to federal guidelines for 

animal care.  

Timed mating and embryo harvest 

 Timed matings were performed by placing breeders together in evening prior to 

the onset of the 12-hour dark cycle. Females were checked the following morning for 

plugs. Plugged females were single housed and euthanized at E11.5, E13.5 or E19.5 to 

harvest embryos. Mouse embryos were harvested by removing the uterine horn, 

separating implantation sites and peeling away the decidua and amniotic sac. Embryos 

were tailed clipped for genotyping and fixed in neutral buffered formalin before transfer 

to 70% ethanol for µCT analysis and further processing for histological analysis. 

μCT analysis on E19.5 embryos 

 E19.5 embryos were imaged using a μCT40
175

 using an X-ray intensity of 145 

μA, energy of 55 kVp, integration time of 200 ms, and resolution of 12 μm. The data was 
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evaluated by applying a Gaussian filter (sigma=1, support =1) using a threshold value of 

300 mg HA/ccm. 

μCT analysis on adult mouse calvaria and teeth 

 Mouse were anesthetized in an induction chamber filled with 4% isoflurane, 

maintained at 1.5% isoflurane and non-invasively imaged using a VivaCT (Scanco 

Medical) to determine calvarial and tooth structure. Scans were performed using an X-ray 

intensity of 145 μA, energy of 55 kVp, integration time of 200 ms, and resolution of 30 

μm. The data was evaluated by applying a Gaussian filter (sigma=1, support =1) using a 

threshold value of 540 mg HA/ccm. 

μCT analysis and biomechanical testing on intact femurs 

 To test the effect of β1 integrin deletion on bone development, femurs were 

harvested from littermates and stored at -80 °C until ready for testing. The frozen femur 

specimens were thawed under running tap water and imaged in PBS using a µCT 40 

(Scanco Medical) to determine femur structure. The mid diaphysis and distal femur were 

imaged with an X-ray intensity of 145 μA, energy of 55 kVp, integration time of 200 ms, 

and resolution of 12 μm. The μCT data for the mid diaphysis was evaluated by applying a 

Gaussian filter (sigma = 0.8, support = 1) and a threshold value of 580mg HA/ccm. An 

auto-contour algorithm
176

 was applied to the μCT scans of the distal femur and the 

epiphysis and metaphysic were separately evaluated using threshold values of 530 and 

615 mg HA/ccm respectively. The μCT data was used to determine the moment of inertia 

of the femur mid-diaphysis, which was combined with biomechanical testing data to 

calculate bone material property values. For biomechanical analysis by 3 point bending 

testing, the femurs were loaded onto bending fixtures with lower span lengths of 6.2 mm. 

The femora were loaded to failure at a rate of 0.5 mm/s at the mid diaphysis using the 

858 Mini Bionix II testing system (MTS).  
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Femur fracture healing model 

 A unilateral femur fracture model was used to study fracture healing in 10-13 

week old wild type and Itgβ1
fl/fl

 
cKO (OCN)

 littermate mice. Mice were anesthetized under 

isoflurane, all hair was removed from the left hindlimb, and the skin was swabbed with 

alcohol and cycloheximide. A medial incision was then made along the femur and the 

underlying muscle was blunt dissected to expose the femur. The patella was dislocated to 

expose the condyles. To stabilize the fracture, a hole was made in the exposed condyles 

using a 25G needle, and a pre-cut 25G needle shaft was inserted into the intramedullary 

canal. A custom-made 3-point bending device was used to create a transverse fracture in 

the femur mid diaphysis. The patella was then repositioned over the condyles, the muscle 

was sutured and the skin incision was closed with wound clips
177

. 

Radiography, μCT analysis and biomechanical testing of fracture calluses 

 At 2 and 5 weeks post-bone fracture, mice were radiographically imaged using 

the MX-20 Radiography System (Faxitron Imaging) using an X-ray beam energy setting 

of 23kV and scan time of 15 seconds. Fractured femurs were harvested post-euthanasia 

from mice at 2 and 5 week time points. After harvest, the intramedullary pins were 

carefully removed from the fractured femurs and the fracture calluses were wrapped in 

PBS-soaked gauze and stored at -20 °C. The fracture calluses were thawed under running 

water and μCT imaged using a μCT (Scanco Medical) with an X-ray intensity of 145 μA, 

energy of 55 kVp, integration time of 200 ms, and resolution of 12 μm.  The 3D 

reconstructions were evaluated by applying a Gaussian filter (sigma = 0.8, support = 1) 

and a threshold value set at half the value used to evaluate intact bone. 

Histology 

 Bone samples were fixed in 10% neutral buffered formalin overnight, decalcified 

in 10% EDTA solution and transferred to 70% ethanol for storage at 4 °C. Fracture callus 

samples were processed for embedding in Immunobed resin and sectioned to 2 μm 
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thickness. Other bone samples were embedded in paraffin and sectioned at 5 µm 

thickness. Sections were deplasticized and stained with Safranin O/Fast Green to 

visualize cartilage or with Picrosirius Red to visualize collagen fibers. 

 

RESULTS 

Embryonic lethality in Itgβ1
cKO (TW2)

 mice 

 Eighty six mice produced from mating itgβ1
fl/+-

TW2-cre mice with itgβ1
fl/fl 

mice 

were genotyped and analyzed. The intercrosses generated 35 itgβ1
fl/+ 

(40.7%), 25 itgβ1
fl/+ 

-Tw2-cre (29.1%), 26 itgβ1
fl/fl 

(30.2%),
 
and 0 itgβ1

fl/fl
-Tw2-cre (0%) mice, while the 

expected Mendelian ratios were 25% for each genotype (Figure 3.2A). The chi-squared 

value for this genotype distribution was 31.48 with 3 degrees of freedom, and a p-value 

of < 0.0001 (Figure 3.2A), demonstrating that the itgβ1
cKO (TW2) 

genotype was not viable. 

Among the viable offspring, itgβ1
fl/+ 

(WT),
 
itgβ1

fl/fl
 (WT) and itgβ1

fl/+ 
-Tw2-cre (het 

itgβ1
cKO (TW2)

) were indistinguishable from each other in terms of gross appearance, size 

or skeletal structure (Figure 3.2B). 
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Figure 3.2. itgβ1
cko (TW2) 

mice are not viable. (A) Live offspring numbers from intercross 

of itgβ1
fl/+-

TW2-cre mice with itgβ1
fl/fl 

mice and chi-square test demonstrate that the 

observed distribution is significantly different from the Mendelian ratio. (B) Radiographs 

indicate no gross skeletal differences between 10 week old female wild type (Itgβ1
fl/fl

  

and Itgβ1
fl/+

 ) and heterozygous itgβ1
fl/+-

TW2-cre (heterozygous itgβ1cko) littermates. 

 

 

 Severe mineralization defects in E19.5 Itgβ1
cKO (TW2)

 embryos 

 In order to study the effects of β1 deletion in the mesoderm on bone formation, 

we harvested embryos generated from timed matings between itgβ1
fl/+-

TW2-cre and 

itgβ1
fl/fl 

mice. At E11.5 and E13.5, itgβ1
cKO (TW2) 

embryos were indistinguishable from 

WT and het itgβ1
cKO (TW2) 

littermates (data not shown). However, at E19.5, itgβ1
cko (TW2)

 

embryos were much smaller (<70% length) than WT littermates (Figure 3.3A), and 

displayed large abdominal growths where the umbilical cord point of attachment would 

be expected (Figure 3.3A, cKO 1 and cKO2) as well as  cranial hemorrhaging (Figure 

3.3A cKO3). μCT analysis of E19.5 embryos revealed considerable skeletal 
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mineralization in WT and het itgβ1
cKO (TW2) 

embryos, but severely reduced mineralization 

in the skulls and vertebrae (Figure 3.3B and C, cKO1 and cKO3), or a complete lack of 

skeletal mineralization (cKO2), in itgβ1
cKO (TW2) 

embryos. However, in two itgβ1
cko (TW2) 

embryos (Figure 3.3B and C, cKO1 and cKO3) mineralization in the long bones and ribs, 

and appeared normal, suggesting that β1 integrins may have a more crucial role in 

mineralization of bones formed by intramembranous ossification than those formed by 

osteochondral ossification. The scapula, however, appeared to be mineralized in itgβ1
cko 

(TW2) 
embryos. It is noteworthy that all the itgβ1

cKO (TW2) 
embryos appeared to have 

umbilical cord or vascular defects. The umbilical cords of WT embryos were clearly 

filled with blood (Figure 3.4A (i)), but itgβ1
cKO (TW2) 

embryos appeared to have blood in 

their amniotic sac (Figure 3.4A (ii), cKO1) or displayed an attached umbilical cord 

devoid of blood (Figure 3.4A (iii), cKO2). It is likely that the embryonic lethality in 

itgβ1
cKO (TW2) 

embryos is related to these observed umbilical cord abnormalities, but 

further analyses are required to fully establish the cause of embryonic lethality. In one of 

the uterine horns harvested at E19.5, 2 out of 5 implantation sites were considerably 

smaller than the implantation sites of the WT and itgβ1
cKO

 embryos, suggesting that 

implanted embryos had already degenerated extensively by E19.5 (Figure 3.4A (iv)). We 

attempted to harvest the degenerated remains of the embryos from these implantation 

sites and the putative degenerated embryo is shown in Figure 3.4A (v). Safranin O/Fast 

Green staining of sections from cKO embryo 1 revealed a lack of hypertrophic 

chondrocytes in some skeletal elements, suggesting that a lack of mineralization in some 

skeletal elements of itgβ1
cKO (TW2) 

embryos may be due to a defect in chondrocyte 

differentiation (Figure 3.4B). 
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Figure 3.3. β1 integrin deficiency in mesoderm results in severe skeletal mineralization 

defects in E19.5 embryos. Stereoscopic images of E19.5 embryos. Double white arrows 

indicate an abnormal large tissue mass in the abdominal region of itgβ1
tw2

 
cKO

 embryos1 

and 2, single white arrow indicates cranial hemorrhaging in itgβ1
tw2

 
cKO

 embryo 3. 

Itgβ1
tw2

 
cKO 

embryos are also smaller than littermates. (B) and (C) MicroCT images of 

E19.5 embryos indicate reduced mineralization of itgβ1
tw2

 
cKO 

embryo skeleton. Scale 

bars indicate (A) 0.5 cm, (B) and (C) 0.4 cm.  
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Figure 3.4. Gross deformities of E19.5 embryos and histological evaluation. (A) 

Stereoscopic images indicates a (i) normal blood-filled umbilical cord attached to a WT 

embryo (black arrow), (ii) blood within the amniotic sac of itgβ1
tw2

 
cKO

 embryo 1, (iii) 

and a lack of blood in the attached umbilical cord of itgβ1
tw2

 
cKO

 embryo 3 (black dashed 

arrow). (iv) Image of the uterine horn of pregnant dam at E19.5 displaying 5 implantation 

sites. One of the sites (dashed arrow) was smaller than the two largest sites and was 

occupied by itgβ1
tw2

 
cKO

 embryo 1. Two other sites (solid arrows) were extremely small 

and appeared severely degenerated. (v) Image of a presumptive resorbed embryo from 

one of the degenerated implantation sites. (B) Safranin O/Fast Green stained sections of 

Itgβ1
cKO (OSX)   

 embryo 1 reveal a lack of hypertrophic chondrocytes within some skeletal 
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elements. (i) Image constructed by stitching 4x micrographs of section. (ii) Micrographs 

of skeletal elements. Scale bars indicate (A) (i) , (ii), (iii) 0.5 cm, (iv) 1 cm  and (v) 0.1 

cm, (B) (i) 0.1 cm, (ii and iii) 100μm.  

 

 

Itgβ1
cKO (OSX)

 mice are runted and exhibit some perinatal mortality 

 In order to study the effect bone phenotype in the absence of β1 integrins in 

osteoprogenitor cells, we bred itgβ1
cKO (OSX)

 mice.
 
 Itgβ1

fl/+-
OSX-cre mice were mated to 

itgβ1
fl/fl 

mice to generate itgβ1
fl/fl-

OSX-cre (itgβ1
cKO (OSX) 

) offspring. This intercrossing 

gave rise to offspring in numbers which were approximately equal to the expected 

Mendelian ratios. Of 88 offspring genotyped, 22 (25%) itgβ1
fl/+ 

(WT), 18 (20.4%) 

itgβ1
fl/fl 

(WT), 27 (30.6%) itgβ1
fl/fl-

OSX-cre (het itgβ1
cKO (OSX)

) and 21 (23.8%) itgβ1
fl/fl-

OSX-cre (itgβ1
cKO (OSX) 

) mice were born, while the expected distribution was 25% for 

each genotype. The chi-squared value for this distribution is 1.909 with 3 degrees of 

freedom, and the two-tailed p value is 0.59. Although newborn pups appeared 

indistinguishable from each other, at the 21 day old weaning age, some animals in each 

litter were noticeably smaller than their littermates. After genotyping, we found that both 

male and female itgβ1
cKO (OSX) 

mice were smaller and weighed approximately 25-35% 

less than their littermates and this weight reduction was maintained at 9 weeks (Figure 

3.5A). The weights of both male and female itgβ1
cKO (OSX) 

were significantly lower than 

all other littermates beginning at 27 days old. Female itgβ1
cKO (OSX) 

mouse weights were 

lower than WT littermates at 24 days but not lower than that of het itgβ1
cKO (OSX)

 mice. 

Radiographic analysis of itgβ1
cKO (OSX) 

mice did not revealed any gross skeletal 

deformities, and confirmed that itgβ1
cKO (OSX) 

were proportionally smaller than their 

littermates (Figure 3.5B). It has been reported that young (<6 week old) OSX-Cre 

transgenic mice have reduced body weights compared to wild-type controls and that this 
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growth delay is resolved at 12 weeks of age
178

. However, the reduced body weight which 

we observed in itgβ1
fl/fl-

OSX-cre (itgβ1
cKO (OSX) 

) was not observed in itgβ1
fl/+-

OSX-cre 

(het itgβ1
cKO (OSX) 

) littermates (Figure 3.5A), demonstrating that the growth defect 

observed is a result of β1 deficiency and not a side effect of the OSX-cre expression 

system. We also observed instances of perinatal mortality in itgβ1
cKO (OSX) 

mice. Two out 

of 21 itgβ1
cKO (OSX) 

mice died between 3 and 5 weeks old (9.5% mortality) compared with 

no deaths of young mice observed among littermates of other genotypes. However, the 

mice which died were extremely small, and weighed an average of 4.1g at 4 weeks old, 

and therefore weighed approximately 30% less than other age-matched itgβ1
cKO (OSX) 

mice. 
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Figure 3.5. Itgβ1
cKO (OSX)

 mice are runted. (A) Weights of itgβ1
cKO (OSX) 

 diverge 

significantly from their littermates between 24-27 days and reduced weight in itgβ1
cKO 

(OSX)  
mice continue into adulthood. Blue circles,  itgβ1

fl/fl 
(WT), black circles, itgβ1

fl/+ 

(WT), green circles, het itgβ1
cKO (OSX)   

, red circles, itgβ1
cKO (OSX)

. (B) Radiographs of 5 

week old male (top) and female (bottom) littermates indicate that mice are proportionally 

smaller than their littermates and do not display any gross skeletal deformities. Inset, 

dorsal view of itgβ1
cKO (OSX)   

and WT female littermates. Scale bar  1 cm. * p<0.05 

compared to WT and het itgβ1
cKO (OSX)  

 , # p<0.05 compared to WT only. 
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Itgβ1
cKO (OSX)

 mice display severe tooth defects 

 We considered the possibility that the reduced weight observed in itgβ1
cKO (OSX) 

mice could be due to a tooth defect (Figure 3.6A). Visual examination of the incisors of 

itgβ1
cKO (OSX) 

mice indicated gross tooth abnormalities. Both the mandibular and 

maxillary incisors of itgβ1
cKO (OSX)

 mice were significantly shorter at both 3 and 5 weeks. 

At 3 weeks, the maxillary and mandibular incisors were barely visible above the gum line 

of itgβ1
cKO (OSX)

 mice. In addition, itgβ1
cKO (OSX) 

incisors were misaligned. μCT analysis 

confirmed that both the maxillary and mandibular incisors in itgβ1
cKO (OSX)

 mice were 

reduced in length at 3, 5 and 8 weeks (Figure 3.6B). The itgβ1
cKO (OSX)

 maxillary incisors 

displayed increased curvature from the lateral view and the tip of one maxillary incisor 

often overlapped the other at 5 and 8 weeks of age. Itgβ1
cKO (OSX)

  mandibular incisors 

were spaced apart from each other and the tips were curved away from each other at 3, 5 

and 8 weeks. The extremely short incisors observed in itgβ1
cKO (OSX)

 mice at 3 weeks 

were accompanied by significantly reduced mineralization of both the mandible and 

maxilla. In contrast to the observed incisor abnormalities, no gross defects were observed 

in itgβ1
cKO (OSX)

 molars. Incisor defects were not observed at 3, 5 or 8 weeks in het 

itgβ1
cKO (OSX)

 mice. In order to determine if the reduced weight in itgβ1
cKO (OSX) 

mice 

(Figure 3.5) was due to a nutritional deficiency caused by incisor defects and difficulty 

for the mice to chew hard food pellets, we fed some litters of mice soft food. Even within 

litters that were provided with a soft diet, itgβ1
cKO (OSX)  

 mice exhibited decreased weight 

compared to their littermates (data not shown). This indicates that the reduced weight 

caused by Osterix-specific β1 integrin deletion is not entirely due to nutritional 

deficiencies caused by abnormal tooth development in itgβ1
cKO (OSX)  

 mice. 
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Figure 3.6. β1 integrin deficiency in osteoprogenitor cells results in incisor defects.  (A) 

Ventral view of 3 and 5 week old littermates revealed gross tooth deformities in itgβ1
cKO 

(OSX) 
mice.(B) 3D μCT reconstruction  displaying lateral and frontal views of littermate 

skulls and incisors indicate that itgβ1
cKO (OSX)  

mice have short and misaligned incisors. 

(B) Scale bar 2 mm. 
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Itgβ1
cKO (OSX)

 mouse calvaria are under-mineralized 

 μCT analysis of mouse skulls revealed severely reduced mineralization in 

itgβ1
cKO (OSX) 

calvaria compared to WT littermates (Figure 3.7). This phenotype was 

observed in frontal, parietal, interparietal and occipital bones, and was most prominent at 

3 weeks, but persisted at 5 and 8 weeks. Mineralization levels in het itgβ1
cKO (OSX) 

mice 

appeared to be intermediate between WT and itgβ1
cKO (OSX)

 mice. 
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Figure 3.7. Itgβ1
cKO (OSX) 

mice have impaired calvarial mineralization.  3D μCT 

reconstructions displaying the dorsal view of calvaria and underlying skull base in WT, 

het itgβ1
cKO (OSX)

 and itgβ1
cKO (OSX)

 littermates at 3, 5 and 8 weeks old indicate 

significantly reduced calvarial mineralization in itgβ1
cKO (OSX)  

mice and an intermediate 

phenotype in het itgβ1
cKO (OSX)

 mice. Scale bar 2 mm. 
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Itgβ1
cKO (OSX) 

mouse femurs have altered structure but heal fractures normally 

 12-week old itgβ1
cKO (OSX)

 femurs analyzed by μCT had abnormal cortical 

structure from a tranverse view (Figure 3.8A (i)). Mid-diaphyseal cortices of itgβ1
cKO 

(OSX)
 mice appeared more triangular in cross-section than the cortices of their littermates. 

While itgβ1
cKO (OSX) 

epiphyses appeared normal (Figure 3.8A (iii)), metaphyses displayed 

increased trabecular spacing (Figure 3.8A (ii)). WT and itgβ1
cKO (OSX)  

fractured femurs 

both developed calluses at 2 weeks post fracture and the callus volume decreased by 5 

weeks post fracture, demonstrating that β1 integrins are not required in  osteoprogenitors 

for fracture healing (Figure 3.8C). 
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Figure 3.8. β1 integrin deletion in osteoprogenitors results in abnormal femur 

development, does not inhibit fracture healing in 3 month old mice. (A) 3D μCT 

reconstructions and (B) μCT histomorphometry measures of the mid diaphyseal cortex. 

(C) Radiographs of fractured femurs at 0, 2 and 5 weeks post-fracture. (D) 
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Biomechanical analysis by 3-point bending testing on the mid-diaphysis of intact femurs. 

Two-tailed t-test, * p<0.05, ** p<0.01, *** p<0.001. Scale bar 0.5 mm. 

 

Itgβ1 
cKO (OCN) 

mice are viable and do not exhibit gross abnormalities 

 Itgβ1 
cKO (OCN)  

mice were born viable in the expected Mendelian frequencies and 

did not exhibit any gross phenotype in terms of size, weight or skeletal structure (data not 

shown).  

OCN-Cre expression is specific to bone 

 X-gal staining of the femurs and tibiae from mice with the Lacz reporter gene for 

Cre-mediated recombination showed that cre recombination due to expression of the 

OCN-Cre transgene was restricted to bone tissue, specifically in the osteocytes in the 

cortical bone of the femur and tibia, in the periosteum and in the growth plate (Figure 

3.9A). As expected, we observed no X-gal staining in the heart, lung, muscle or liver 

tissue (Figure 3.9B).   
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Figure 3.9. Cre-mediated excision of DNA under the OCN-Cre promoter is osteoblast 

and osteocyte- specific. (A) Whole-mount x-gal stained (blue) of Lacz reporter/OCN-Cre 

mouse  shows that  cre expression is specific to bone. (B) Cryosections after whole mount 

X-gal staining, nuclei counterstained with nuclear fast red (red). Scale bar (A) 0.5 cm, (B) 

50 μm. 

 

 

Femur structure is altered in the absence of β1 integrins in osteocytes/osteoblasts 

but there are no differences in bone mechanical properties 

 To assess the effect of β1 integrin deletion osteoblasts and osteocytes on bone 

development and healing, we analyzed the structure of intact femurs in male 10-week old 
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β1
fl/fl

 (WT) and β1
fl/fl

/OCN-Cre  (itgβ1 
cKO (OCN)

) littermates by μCT analysis. itgβ1 
cKO 

(OCN)
 femurs had thicker cortices with higher bone volumes (Figure 3.10 A and B (i), 

p<0.05) and moments of inertia. In addition, itgβ1 
cKO (OCN)

 epiphyses displayed increased 

connectivity density, trabecular thickness (Figure 3.10 A and B (ii), p<0.01) and 

trabecular number. In contrast, there was reduced connectivity density and higher 

trabecular thickness in the metaphyses of animals with bone-specific β1 integrin deletion 

(Figure 3.10 A (iii), p<0.01 and 0.05 respectively). Despite this observed difference in 

bone structure, there were no differences in the biomechanical properties of itgβ1
cKO (OCN) 

as measured by three point bending (Figure 3.10D). Ultimate stress, elastic modulus, 

maximum load and work to failure values were not significantly different between WT 

and itgβ1 
cKO (OCN) 

femurs. 
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Figure 3.10. Itgβ1 
cKO (OCN) 

mice have altered femur structure, but unaltered 

biomechanical properties. (A) μCT measures and (B) 3D μCT reconstructions for the (i) 

cortex, (ii) epiphysis, (iii) metaphysis and (iv) entire femur. One-way ANOVA with 

genotype as fixed effect, parents as random effects, * p<0.05, ** p<0.01. Scale bar: (C) 

500μm . 
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Loss of β1 integrins in osteocytes/osteoblasts did not change fracture healing 

capacity 

 In order to examine the effect of β1 integrin deletion on fracture healing potential, 

we created mid-diaphyseal femur fractures in WT and itgβ1 
cKO (OCN)  

mice and evaluated 

their healing over 5 weeks. At 2 weeks post-fracture, both WT and itgβ1 
cKO (OCN)  

mice 

displayed callus formation (Figure 3.11A and B). Five weeks after fracture, the calluses 

for both genotypes of mice remodeled, and no gross structural differences could be 

observed in radiographs or 3D μCT reconstructions (Figure 3.11A and B). μCT measures 

such as callus bone volume at 2 weeks and 5 weeks, as well as the moment of inertia at 5 

weeks, were not different between groups (Figure 3.11C). In addition, 3-point bending 

biomechanical testing on the fracture calluses at 5 weeks post-surgery also showed no 

differences in ultimate stress, elastic modulus, maximum load or work to failure (Figure 

3.12A), showing that β1 integrin deficiency in osteoblasts and osteocytes did not impair 

fracture healing. One representative sample from each group was taken down for 

histological analysis at 2 and 5 weeks post-fracture. Safranin O staining revealed 

considerable cartilage presence in both WT and itgβ1 
cKO (OCN)  

calluses after 2 weeks 

(Figure 3.12B). By 5 weeks post-fracture, there was no longer any cartilage present in 

both WT and itgβ1 
cKO (OCN)  

calluses. Qualitatively, there appeared to be a greater amount 

of cartilage in the WT callus at 2 weeks. There was no difference in the mineral densities 

of either intact bone or 5 week fracture calluses of WT and itgβ1 
cKO (OCN)  

mice (Figure 

3.12C). In agreement with this observation, bone marrow stromal cells s harvested from 

WT and itgβ1 
cKO (OCN)  

mice exhibited no differences in alkaline phosphatase activity at 

14 days after culture in osteogenic media or in mineralization at 21 days after osteogenic 

induction (Figure 3.12D). These results demonstrate that β1 integrin deficiency in 

osteoblasts and osteocytes does not impair fracture healing potential or mineralization. 
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Figure 3.11. Femur fracture healing is not impaired in itgβ1 
cKO (OCN)  

mice. (A) 

Radiographic images, (B) 3D μCT reconstructions and (C) μCT measures of fractured 

femurs from  WT, n=8 and itgβ1 
cKO (OCN)

 n=8 littermates at (i) 2 and (ii) 5 weeks post-

surgery indicate no differences in fracture healing as a result of β1 integrin deletion under 

an osteocalcin promoter. Bars indicate standard deviation. One-way ANOVA with 

genotype as fixed effect, parents, sex and age as random effects , * p<0.05, ** p<0.01. 

Scale bar: 1mm. 
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Figure 3.12. Itgβ1 
cKO (OCN) 

 callus mechanics, histomorphometry, mineral density and 

BMSC mineralization are unchanged. (A) 5-week biomechanical analysis by 3-point 

bending and (B) histological evaluation of fractured femurs at 2 and 5 weeks from WT 

and itg β1 
cKO OCN 

 littermates by (i) safranin-o /fast green and (ii) picrosirius red staining. 

(C) μCT evaluation of mineral density in intact femurs and fracture calluses. (D) In vitro 

ALP expression and mineralization (Alizarin red staining, ALZ) of BMSCs after 14 and 

21 days of osteogenic induction respectively. Bars indicate standard deviation. One-way 

ANOVA with genotype as fixed effect, parents and age as random effects, * p<0.05, ** 

p<0.01.  Scale bar: (B) 300 μm (left), 100 μm (right).  
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 DISCUSSION 

 β1 integrins are highly expressed in osteoblasts, osteoprogenitors, and 

perturbation of β1 integrins in vitro
1-10

 results in reduced differentiation and 

mineralization, and survival
49

. However, in vivo studies have failed to demonstrate a 

crucial role for β1 integrins in bone formation. For example, transgenic mice expressing a 

dominant negative mutant form of the β1 integrin under an osteocalcin promoter
13, 18, 19

 as 

well as mice with conditional  β1 integrin deletion under the osteoblast-specific Col I 

2.3kb promoter 
20

  have displayed only mild skeletal phenotypes
11, 12

.  We hypothesized 

that this contradictory result may be due to the timing of β1 integrin deletion in vivo. In 

order to address this hypothesis, we generated transgenic mice with β1 integrin  loss in 

osteolineage cells at three different stages by mating β1 integrin-floxed mice with the 

following transgenic cre-expressing mice: integrin deletion was achieved in (1) 

mesodermal cells such as somites and mesencymal condensations using Twist2-Cre mice 

(TW2-Cre)
68

, (2) osteoprogenitor cells using Osterix-Cre mice (OSX-Cre), and (3) 

mature osteoblasts and osteocytes with Osteocalcin-Cre mice (OCN-Cre) 
69

.  

 We found that β1integrn loss under the Twist-2 promoter resulted in embryonic 

lethality, while the distributions of WT and het itgβ1
cKO (TW2) 

embryos appeared normal. 

While itgβ1
cKO (TW2)

 embryos  appeared indistinguishable from littermates at E11.5 and E 

13.5, isolated E19.5 itgβ1
cKO (TW2)  

embryos were significantly smaller than WT litter 

mates and appeared to have gross structural and functional defects of the umbilical cord 

as well as cranial hemorrhaging. Skeletal mineralization in itgβ1
cKO (TW2) 

embryos was 

markedly reduced, with no mineralization observed at all in one itgβ1
cKO (TW2)

 embryo 

and failure of calvarial and vertebral mineralization displayed in two other itgβ1
cKO (TW2)

 

embryos. Some implantations sites on harvested uterine horns were extremely small, 

indicating degeneration of implanted embryos, and suggesting that lethality may have 

occurred at an early stage in some proportion of the embryos. In contrast, itgβ1
cKO (OSX)

 

mice were viable and born in the expected Mendelian frequency, but demonstrated 
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reduced growth compared to WT littermate controls. Itgβ1
cKO (OSX) 

mice weighed less 

than their control littermates at 27 days and exhibited reduced weight until adulthood. 

Radiographic analysis indicated that itgβ1
cKO (OSX) 

mice suffered from proportional and 

not short-limbed dwarfism. In addition, itgβ1
cKO (OSX) 

displayed severe tooth defects. Both 

maxillary and mandibular incisors were reduced in length and misoriented in itgβ1
cKO 

(OSX)
 mice, while molars appeared grossly normal. igβ1

cKO (OSX) 
calvaria also 

demonstrated impaired mineralization. In addition, itgβ1
cKO (OSX) 

femurs displayed 

decreased mineral density, bone volume and moment of inertia (Imin). However, itgβ1
cKO 

(OSX) 
femurs retained their fracture healing capacity. In contrast, itgβ1

cKO (OCN) 
mice 

displayed only mild skeletal phenotypes. Itgβ1
cKO (OCN) 

animals were viable and born in 

the expected Mendelian ratios. Surprisingly, itgβ1
cKO (OCN) 

femurs showed increased 

cortical thickness, as well as higher trabecular thickness in the epihphysis and 

metaphysis. However, femur biomechanics, as well as the itgβ1
cKO (OCN) 

fracture healing 

response was unchanged. 

 Previous studies of conditional β1 integrin deletions in mice have shown growth 

plate abnormalities, short-limbed dwarfism and perinatal lethality with chondrocyte-

specific integrin deficiencies
179

, but mild phenotypes with osteoblast/osteocyte-specific 

deletions 
13, 18, 19

 
11, 12

. Given that β1 integrin deletion under the osteochondroprogenitor 

marker Prx-1 produced viable mice with short-limbed dwarfism and joint defects due to 

deficiencies in growth plate and articular cartilage
180

, we were surprised that itgβ1
cKO 

(TW2) 
mice did not survive embryonic development, since Twist 2 is also expressed in 

osteochondroprogenitor cells. However, there are some differences in cre expression 

under Prx-1 and Twist 2 which may provide an explanation for this observation. While 

the first cre expression in both Prx-1-cre and Twist 2-cre occurs at E9.5, in Prx-1-cre 

embryos, expression is seen in mouse limb buds, while in Twist 2-cre embryos, cre 

expression is seen in somites and branchial arches, but also in skin
67

. Prx-1-cre 

expression may be more restricted to skeletal regions than Twist 2-cre expression. It is 
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likely that the cause of embryonic lethality in itgβ1
cKO (TW2) 

embryos is not related to 

skeletal development because embryos lacking mineralized skeletons usually survive 

embryonic development and die newborn due to respiratory distress, as is seen with 

Runx2 deficient mice
79

. Studies involving the earliest stage deletion of β1 deletion under 

osteo or chondro lineage promoters were deletions under Prx-1-cre
180

 and Col2a1-cre
179

. 

Neither of these studies reported defects in mineralization. Therefore, the severe 

mineralization defects observed in itgβ1
cKO (TW2) 

embryos are probably not due to β1 

deletion in chondrocytes. The presence of umbilical cord defects and cranial 

hemorrhaging in itgβ1
cKO (TW2) 

embryos may indicate embryonic lethality due to vascular 

defects. To our knowledge, the skeletal mineralization phenotype we have seen in 

itgβ1
cKO (TW2)

 E19.5 embryos is the most severe mineralization defect observed in vivo 

due to β1 integrin loss in osteochondro lineage cells. Although one itgβ1
cKO (TW2)

 E19.5 

embryo displayed no skeletal mineralization at all, two other itgβ1
cKO (TW2)

 embryos 

lacked craniofacial and vertebral mineralization but demonstrated mineralized long 

bones, ribs and scapula. The long bones are part of the appendicular skeleton which is 

derived from lateral plate mesoderm cells. However, the vertebrae are part of the axial 

skeleton and derived from sclerotome cells in the somites. In contrast, craniofacial bones 

are derived from a combination of neural crest and mesoderm-derived cells. The 

differential effect on β1 integrin deletion on various skeletal elements may be related to 

their developmental origin. 

 Itgβ1
cKO (OSX)

 mice were viable and displayed reductions in calvarial 

mineralization as well as incisor defects and growth abnormalities. While itgβ1
cKO (OSX)

 

calvaria were poorly ossified compared to age-matched littermates at all the time points 

studied, calvarial mineralization continued to increase with age in the itgβ1
cKO (OSX)

 mice, 

suggesting delayed mineralization in  itgβ1
cKO (OSX)

 calvaria. Some aspects of the itgβ1
cKO 

(OSX)
 phenotypes reported here have also been observed in mice with global deletions of 

the collagen-binding α11 or α2 integrins, as well as in α11+ α2 integrin double 
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knockouts. α11, α2, and α2 +α11 integrin knockout mice exhibit proportional dwarfism 

attributed  to altered IGF-1/GH signaling due diminished GHRH production in the 

hypothalamus 
181

. α11 KO incisors are also shortened
182

, although the incisor defect in 

α11 KO mice  do not appear to be as severe as in in itgβ1
cKO (OSX)

 mice. It is possible that 

the proportional dwarfism and incisor defects in itgβ1
cKO (OSX)

 mice are partly due to 

α11β1 and α2β1integrin deletion. The knockout of ICAP-1 (also known as integrin β1 

binding protein 1), which binds to
183

 and regulates β1 integrin function
184

, results in 

calvarial mineralization defects as well
185

, which also supports a role of β1 integrins in 

calvarial development.   

 We found that β1 integrin deletion in mature osteoblasts and osteocytes resulted 

in subtle structural alterations to cortical and trabecular bone in femurs. The cortical 

thickness as well as trabecular thickness was increased in both the epiphysis and 

metaphysis of itgβ1
cKO (OCN) 

mice. However, the biomechanical properties of femurs were 

unchanged in itgβ1
cKO (OCN) 

mice compared to WT controls. We also found that fracture 

healing was not impaired in in itgβ1
cKO (OCN) 

femurs, as measured by μCT as well as 

mechanical testing. Our data suggests that β1 integrins are not required for osteoblast 

function. These results are supported by previous studies involving β1 integrin deletion 

under an osteocalcin promoter
11, 12

, or expression of a dominant-negative form of the β1 

integrin under an osteocalcin promoter
13, 18

, which have displayed minor phenotypes . 

While these findings suggest an early important role for β1 integrin  in regulating bone 

development, the mechanism by which this occurs is still unknown. Further studies will 

be required to elucidate the role of β1 integrins in regulating early skeletal progenitor 

cells, as well as and how compensation occurs for β1 integrins in osteoblasts, given that 

the majority of bone ECM proteins are β1 integrin ligands. However, these results must 

be interpreted with several qualifications. Although Twist 2 is expressed in osteolineage 

cells, it is not osteolineage specific, and is also expressed in other tissues such as the 

dermis. Therefore, some aspects of the skeletal phenotype observed in itgβ1
cKO (TW2)
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embryos may be modulated by alterations to non-osteolineage cells. We have reported 

empirical observations on the effects of targeted β1 integrin deletions. However, further 

studies will be required in order to elucidate the in vitro phenotypes of itgβ1
cKO (OSX)

 

osteoprogenitors and itgβ1
cKO (TW2)

 MSCs, and to determine β1 integrin signaling 

pathways responsible for our observed phenotype. We also note that although we 

observed only minor differences between the bone phenotypes of itgβ1
cKO (OCN)

 mice and 

their wild-type littermates, our analyses have focused on the femurs of 10-13 week old 

mice. Therefore it is possible that transient femur phenotypes in younger mice, or 

alterations in the development of other bones may occur in itgβ1
cKO (OCN)

 mice. 

 In conclusion, we have demonstrated that β1 integrin deficiency in somites and 

mesenchymal condensations induce severe defects in skeletal mineralization. This finding 

highlights that β1 integrins play a crucial role in early skeletal development, especially in 

the calvaria and vertebrae. We have also shown that β1 integrin deletion in osterix-

expressing osteoprogenitors results in a delay in calvarial ossification. In addition, 

itgβ1
cKO (OSX)

 mice display severely shortened maxillary and mandibular incisors, 

indicating that β1 integrins regulates incisor eruption.  However, β1 integrin loss in 

osteoblasts and osteocytes induces only minor changes to bone phenotype and does not 

impair fracture healing. Thus we provide the first in vivo evidence that β1 integrins are 

essential for calvarial development and that the regulatory role of β1 integrins is either 

increasingly diminished or compensated for as skeletal progenitor cells undergo 

commitment and differentiation. 
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CHAPTER 4: INTEGRIN-SPECIFIC BIOFUNCTIONALIZED PEG-

MAL HYDROGELS ENHANCE BONE REGENERATION IN 

MURINE SEGMENTAL DEFECTS 

INTRODUCTION 

 Over 1 million bone grafting, bone excision and fracture repair surgeries are 

performed annually in the US, at cost of approximately $5 billion 
14-17

. While autografts, 

which are usually harvested from the patient’s iliac crest, are the gold standard of care, 

autografts are limited by the available donor graft volume and often cause pain and 

inflammation at the donor site
22

. Allografts are more readily available than autografts but 

are processed to prevent the infection and immunogenicity. These processes decrease 

allograft osteogenicity and structural properties due to the absence of viable cells and 

limit the ability of allografts to remodel, and result in a high complication rate
22, 89-91

. 

These limitations of traditional bone grafts have spurred the development of bone graft 

substitutes such as BMP-containing products which have been widely adopted since 

2002, when BMP-2 and BMP-7 products were approved by the FDA for use in humans. 

While BMP therapy has been successful in stimulating bone formation, the BMP doses 

used clinically are orders of magnitude higher
186

 than physiological concentrations of 

BMP, resulting in high costs of treatment
95

. Furthermore, delivery of supraphysiological 

BMP doses without sustained release mechanisms may result in growth factor diffusion 

away from the defect site and result in complications such as ectopic bone formation, 

nerve injuries
96

, as well as inflammatory and carcinogenic effects 
22-24

. Therefore, there 

remains an unmet clinical need for bone graft substitutes which are safe, cost-effective 

and efficacious. 

 Tissue engineering strategies, which deliver materials, bioactive molecules and/or 

cells in vivo to provide microenvironmental cues which stimulate tissue repair, show 
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great promise in addressing the need for improved bone graft substitutes. Recent efforts 

have focused on biomimetic strategies focused on engineering synthetic ECM analogues 

which promote specific integrin-ECM interactions to direct desired host cells responses
25, 

187, 188
. Integrins are a family of cell surface receptors which mediate cell-extracellular 

matrix interactions and regulate crucial cell functions such as survival, growth, migration 

and differentiation 
27, 29, 30

. Specifically, the interaction of 21 integrins with collagen I 

is a crucial signal for osteoblastic differentiation and matrix mineralization 
3, 4, 41-44

. The 

hexapeptide sequence Gly-Phe-Hyp-Gly-Glu-Arg (GFOGER) is found on residues 502–

507 of the 1(I) chain of type I collagen and serves as the major recognition site for 21 

integrin binding 
117, 126, 127

. Our group has previously engineered a synthetic collagen I-

mimetic GFOGER containing peptide, GGYGGGPC(GPP)5GFOGER(GPP)5GPC, which 

recapitulates the triple helical tertiary structure of native collagen and binds specifically 

to 21 integrins. The GFOGER ligand has been shown to recapitulate the bioactivity of 

collagen I, and is also effective in supporting bone healing and osseointegration in vivo. 

Surfaces presenting adsorbed or covalently immobilized GFOGER peptide support 

equivalent levels of 21 integrin-mediated cell adhesion as native collagen I 
128

 and also 

promote osteoblastic differentiation of MC3T3-E1 and primary bone marrow stromal 

cells in vitro 
25, 129

. Furthermore, simple adsorption of GFOGER to PCL scaffolds 

enhances bone repair in vivo within rigorous critical-sized rat femur defect models 

without the delivery of cells or growth factors 
130

. GFOGER-functionalized titanium 

implants also enhance implant integration in a rat cortical model by improving peri-

implant bone formation and implant fixation to bone 
25, 129

. 

 In this study, we incorporated the adhesive 21 integrin-specific GFOGER 

ligand combined with low dose rhBMP-2 in a protease-degradable PEG-maleimide 

hydrogel and evaluated the regenerative potential of our biomaterial in a murine radial 

segmental defect model. We chose to deliver the bioactive ligand and growth factors 
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within a PEG-maleimide hydrogel because synthetic hydrogels offer advantages such as 

low inflammatory profiles, tailorable mechanical properties and biofunctionality
189, 190

. 

We hypothesized that presentation of the integrin-specific GFOGER in combination with 

sustained, cell-mediated ‘on-demand’ release of low-dose rhBMP-2 would promote 

osteoblastic differentiation of host cells and promote bone regeneration in vivo. 

METHODS 

Hydrogel synthesis and collagen sponge implant preparation 

 GFOGER peptide, GGYGGGPC(GPP)5GFOGER(GPP)5GPC,  (4 kDa peptide, 

12kDa as the self-assembled triple helical molecule) was custom synthesized via solid 

phase synthesis by Activotec (Figure 4.1A). Four- arm, maleimide-end functionalized 

(>95%) PEG macromer (, PEG-MAL, 20 kDa) was purchased from Laysan Bio (Figure 

4.1B). The RGD adhesive peptide GRGDSPC (RGD) and bi-cysteine crosslinker peptide 

GCRDVPMSMRGGDRCG (VPM)
191, 192

 were synthesized by AAPTEC. Carrier-free 

rhBMP-2 was purchased from R&D Biosystems. PEG-MAL hydrogels were synthesized 

by reacting PEG-MAL with adhesive ligands (RGD or GFOGER) followed by rhBMP-2 

and the VPM crosslinking peptide and incubating at 37C (Figure 4.1C). Thin 2D gel discs 

were fabricated by coverslipping gel solutions with sterile coverslips which were treated 

with Sigmacote to increase their hydrophobicity. 1.5 µL of hydrogel was cast within each 

4 mm long polyimide sleeve for ease of handling during in vivo implantation. 3 mm thick 

collagen sponges were cut with a 1 mm diameter biopsy sponge and placed within the 

polyimide sleeves prior to implantation. Polyimide sleeves were laser machined with 200 

μm diameter holes to allow for cell invasion and nutrient transport into the defect site. 
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hMSC cell culture and differentiation assays 

 hMSCs were obtained from Lonza. hMSCs were cultured in MSCGM (Lonza) 

and seeded for osteogenic differentiation assays at a density of 10,000 cells/cm
2
on thin 

hydrogel surfaces. hMSCs were then cultured for up to 21 days in osteogenic induction 

media (Lonza). After 3 days of culture in osteogenic media, cells were rinsed in PBS and 

incubated in 2 μM calcein and 4 μM ethidium homodimer for 30 minutes for Live/Dead 

staining, and then imaged on a Zeiss microscope At 14 days post-induction, hMSCs were 

assayed for alkaline phosphatase activity (ALP). Briefly, cells were scraped in PBS, 

transferred to cold 50 mM Tris-HCl and sonicated to lyse the cells. The total protein 

content for each lysate sample was determined using a BCA assay kit (Thermo Scientific) 

according to the manufacturer’s instructions. Samples were diluted to the same total 

protein content before assaying for ALP. Samples and ALP standards were loaded into a 

96-well plate, then incubated with MUP substrate at 37 °C for 1 hour and read at 360 nm 

excitation and 465nm emission. Mineral deposition at 21 days post-induction was 

assayed by Alizarin Red staining. Cells were fixed in 10% formalin, rinsed twice in water 

and incubated in 2% Alizarin Red solution for 20 minutes. After 4 washes in water, the 

stained cells were scraped in 10% acetic acid and heated to 85 °C for 10 minutes. The 

supernatant was collected after centrifugation, neutralized with 10% ammonium 

hydroxide and read in a 96-well plate at 405nm. 

Thiol quantification assay 

 We carried out a thiol quantification assay in order to determine the efficiency of 

GFOGER ligand incorporation to PEG-MAL via Michael addition reaction of the thiol 
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containing cysteine amino acid residues with maleimide groups. The thiol measure-IT 

assay kit was purchased from Invitrogen. PEG-MAL was reacted with GFOGER ligand 

at various molar ratios for 1 hour at 37 °C. A 96-well plate was pre-loaded with the 

working solution and PEG-GFOGER reaction mixtures as well as GFOGER standards 

then added to appropriate wells. After 5 minute incubation at room temperature, the plate 

was read at 494nm excitation and 517nm emission. 

Murine radial segmental defect surgery 

 B6129SF2/J wild-type male mice (8-10 week old) were purchased from Jackson 

Laboratories. Mice were anesthetized under isoflurane and fur was removed from the 

right forelimb using a depilatory cream. The forelimb was then swabbed with 

chlorohexidine and alcohol to sterilize the surgical site and a 1.5 cm incision was made in 

the skin. Muscle tissue overlying the ulna and radius were blunt dissected, and a 2.5 mm 

defect was created in the radius using a custom-machined bone cutter, while leaving the 

ulna intact. Hydrogel or collagen sponge placed within polyimide sleeves were implanted 

into the defect by fitting the sleeve over the radius at the proximal and distal ends of the 

defect, so that the hydrogel or collagen sponge filled the defect space. The incision was 

then closed with vicryl suture and wound clips. Mice were provided with a single dose of 

slow release buprenorphine for pain relief and were monitored post-surgery for signs of 

distress, normal eating habits and movement. 

Radiography, μCT analysis and biomechanical evaluation 

 Every two weeks after surgery, radial defects were imaged radiographically with 

the MX-20 Radiography System (Faxitron Imaging) using an X-ray beam energy setting 

of 23kV and scan time of 15 seconds. At 4 and 8 weeks post-surgery, radial defects were 
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non-invasively analyzed by μCT scanning a 3.2 mm length of defect using a VivaCT 

(Scanco Medical) using the following parameters: intensity of 145 μA, energy of 55 kVp, 

integration time of 200 ms, and resolution of 15 μm. Evaluation of bone formation within 

the radial defect was performed by hand contouring 2D slices to include only the radius 

and exclude ulnar bone. The data was evaluated by applying a Gaussian filter (sigma=1, 

support =1) using a threshold value of 540mg HA/ccm. 3D μCT reconstructions display 

the full 3.2 mm length of radius scanned. However, in order to ensure that only new bone 

formation was measured, quantification of bone volume and mineral density within the 

defect was performed by evaluating only the middle 2.0 mm of defect. defect. For 

biomechanical testing, radii were potted win Wood’s metal within a custom potting 

apparatus. After potting, the ulna was cut and the radii were loaded onto a Bose ELF 

3200 testing system. Torque was applied to the samples at 3 degress per second until 

failure. 

GFOGER and rhBMP-2 labeling and FMT analysis 

 Vivotag 800 and Vivotag 680 XL amine reactive NHS ester near infrared (IR) 

dyes were purchased from Perkin Elmer. GFOGER peptide and rhBMP-2 were labeled 

with Vivotag 680 and Vivotag 800 respectively. GFOGER peptide was reconstituted in 

50 mM sodium carbonate buffer, pH 8.5 and reacted with excess Vivotag 800 dissolved 

in PBS for 2 hours at room temperature. rhBMP-2, which was lyophilized in acid, was 

reconstituted in NaOH to obtain an rhBMP-2 solution at neutral pH. rhBMP-2 was 

reacted with excess Vivotag 800 dissolved in PBS for 1 hour at room temperature. 

Labeled GFOGER and rhBMP were both desalted using Zeba 7kD MWCO columns to 

remove unreacted dyes and salts from the solutions, and then snap frozen and lyophilized 

overnight.  GFOGER ligand or rhBMP-2 retention within the defect site was analyzed 
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using a FMT 4000 instrument (Perkin Elmer). Fur was removed from the right forelimb 

of mice and placed within a mouse imaging cassette, with their forelimbs resting on a 

tissue imaging block. Mouse forelimbs were scanned at a source density of 1 mm with a 

total of 65 total source points per scan on the 680 or 790 laser channels for Vivotag 680 

and Vivotag 800 respectively. Vivotag 680 or Vivotag 800 conjugates were selected as 

the agents in the scan setting scans. The IR dye signal was quantified by placing 

rectangular prism-shaped 3D regions of interest markers (ROIs) around the right forelimb 

and thresholding at 0 nM concentration. The total amount of IR dye per animal was 

reported normalized to the day 0 value. For in vitro release studies, Vivotag 800-labeled 

rhBMP-2 was encapsulated within 5ul hydrogels consisting of 4% wt/vol PEG-maleimide 

functionalized with 2mM GFOGER at a final rh-BMP-2 concentration of 0.04 μg/ul. 5ul 

of 0.04 μg/ul rh-BMP-2 was also pipetted into collagen sponges. The hydrogels and 

collagen sponges were each placed in 200ul PBS or 0.1 mg/ml collagenase I solution. 

rhBMP-2 release into from the hydrogel or sponge into solution was measured by taking 

5μl aliquots of the solution at various timepoints and reading their fluorescence values 

using a Xenogen IVIS Lumino II fluorescence imager. 

Histology 

Animals were euthanized 8 weeks after surgery by excess CO2 inhalation and 

their radii and ulna were harvested. Soft tissue was removed carefully without disturbing 

the defect and the bones fixed in 10% neutral buffered formalin overnight. Samples were 

then briefly rinsed in tap water and decalcified in formic acid for two days. The samples 

were then processed for embedding in Immunobed (GMA) resin and sectioned to 2 μm 
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thickness. GAM sections were deplasticized and stained with Safranin O/Fast Green, 

Picrosirius Red or H&E. 

Statistical analysis 

 Data was analyzed by one-way ANOVA with post-hoc Tukey in JMP, or with 

Student’s t-test. A p value of less than 0.05 was considered significant. 
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RESULTS 

Functionalizing PEG-MAL with GFOGER 

 The thiol containing GFOGER ligand was covalently tethered to PEG-MAL by 

Michael addition reaction (Figure 4.1D) between the thiol groups in the cysteine amino 

acid residues of GFOGER and the maleimide groups in PEG-MAL. In order to determine 

the efficiency of GFOGER peptide tethering efficiency to PEG-MAL, we reacted 

GFOGER peptide with PEG-MAL at varying ratios of maleimide: triple helical 

GFOGER molecule and measured the concentration of free thiols present in the reaction 

mixture, with known concentrations of GFOGER as a standard. GFOGER incorporation 

increased from 0% at a maleimide: GFOGER ratio of 0 to almost 100% at a maleimide: 

GFOGER ratio of 5.5 (Figure 4.1E). Therefore, at a maleimide: GFOGER molar ratio of 

5.5 or higher, all the GFOGER that reacted with PEG-MAL will be incorporated into the 

final GFOGER-PEG hydrogel. 
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Figure 4.1. The synthetic GFOGER ligand tethered to PEG-MAL at controlled densities 

and chemically crosslinked to form a protease-degradable hydrogel network. (A) A 

space-filling model of the GFOGER ligand. (B) Chemical structure of branched 4-armed 

PEG-maleimide macromer. (C) Protease sensitive PEG hydrogels incorporating 

GFOGER and BMP-2 are synthesized by reacting PEG-MAL with GFOGER and BMP-2 

and adding a protease-degradable bi-cysteine peptide to form a crosslinked hydrogel 

network. (D) Maleimide groups form covalent bonds with sulhydryl-containing 

molecules at physiological pH by Michael addition to form a thioester linkage. (E) 

GFOGER ligand reacts completely with PEG-MAL when the maleimide: GFOGER ratio 

exceeds 5.5. 
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hMSC adhesion, viability and differentiation on GFOGER or RGD hydrogels 

 In order to assess if GFOGER functionalized PEG hydrogels could support cell 

adhesion, viability and differentiation, we seeded hMSCs atop thin flat PEG-MAL 

hydrogels functionalized with GFOGER or RGD at equimolar densities. We observed an 

increase in hMSC adhesion and spreading on both GFOGER and RGD hydrogels with 

ligand densities ranging from 0.5 mM to 2 mM (Figure 4.2A), while cells on PEG-only 

(no RGD or GFOGER) and 2 mM non adhesive RDG gels remained rounded and 

supported extremely low levels of adhesion (Figure 4.2A). This intrinsically low 

background of PEG allowed us to detect differences in bioactivity of GFOGER or RGD 

ligands. Live/dead staining of hMSCs after 3 days of culture on hydrogel surfaces 

demonstrated high cell viability on both 2 mM GFOGER and 2 mM RGD surfaces 

(Figure 4.2B). While 2mM GFOGER and RGD surfaces supported similar levels of 

adhesion and viability, alkaline phosphatase activity of hMSCs on GFOGER surfaces 

was significantly higher than on RGD surfaces, p<0.05 (Figure 4.2C). GFOGER 

hydrogels also enhanced in vitro mineralization compared to RGD gels. hMSCs cultured 

on GFOGER surfaces had Alizarin red staining and extraction values which were 30% 

higher than hMSCs on RGD gels, p<0.01 (Figure 4.2D). 
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Figure 4.2. hMSC adhesion, viability and differentiation on GFOGER and RGD hydrogel 

surfaces. (A) Micrographs of calcein-stained hMSCs on GFOGER and RGD gel surfaces 

at varying bulk densities of ligand 1 day after seeding. (B) Live/Dead stained hMSCs on 

2 mM GFOGER and 2 mM RGD hydrogel surfaces 3 days after osteogenic induction. 

(C) ALP activity at 14 days and (D) Alizarin Red stain for mineralization at 21 days post 

induction. Scale bar (A) 50 μm and (B) 20 μm. 

 

Bone formation in response to GFOGER and GFOGER/BMP hydrogels 

 To evaluate the effect of GFOGER and GFOGER/BMP hydrogels on bone 

formation, we implanted these materials into murine radial critical-sized segmental 

defects. 2.5 mm long segmental defects (Figure 4.3) were created in the right radii of age-

matched male mice, while leaving the ulna intact (Figure 4.4A, week 0). In a pilot study, 

we established that there were no differences in bone formation within untreated empty 
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defects and defects which received an empty tube implant. We subsequently used empty 

tube implants as our negative controls. The conditions tested were defects treated with 

polyimide tubes with (1) no hydrogel (empty tubes), (2) 4% (wt/v) PEG hydrogels 

functionalized with 2 mM GFOGER (GFOGER), or (3) 4% (wt/v) PEG hydrogels 

modified with 2 mM GFOGER and incorporating 0.03 μg of rh-BMP-2 (GFOGER/0.03 

μg rhBMP-2). While negligible bone formation occurred at the ends defects treated with 

empty tubes, GFOGER and GFOGER/0.03 μg rhBMP-2 treated defects showed 

significantly greater bone regeneration over time (Figure 4.4B and C).  Four out of 6 

GFOGER-treated defects came close to bridging the defects and 5/7 GFOGER/0.03 μg 

rhBMP-2-treated defects bridged after 8 weeks (Figure 4.4B). Despite the increased rate 

of bridging with GFOGER/0.03 μg rhBMP-2 implants compared to GFOGER implants, 

the bone volume values between these groups was not significantly different at 4 or 8 

weeks. In contrast, bone volumes in GFOGER-treated and GFOGER/0.03 μg rhBMP-2-

treated defects were higher than in empty tube defects at 8 weeks post-surgery, p<0.05 

(Figure 4.4C). However, there were no differences in bone mineral density between any 

of the groups at either time points (Figure 4.4C).  
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Figure 4.3. Murine radial segmental defect model. (A) Hydrogels are pre-cast in a 

polyimide sleeve with 200 μm diameter holes along the tube walls. (B) 2.5 mm defects 

are created in the radius (r) while leaving the ulna (u) intact to stabilize the defect. (C) 

Radial defect with hydrogel-sleeve implant, hydrogel is blue for better visualization. (D) 

Sample 3D μCT reconstruction of radial defect 3 days after surgery. (E) Excised radius 

and ulna with 2.5 mm radial defect (left) and with 4 mm polyimide sleeve fitted over the 

defect (right). 
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Figure 4.4. Radiographic and μCT evaluation of bone healing in response defects treated 

with GFOGER hydrogels or GFOGER/0.03μg rhBMP-2. (A) Representative 

radiographic images, (B) 3D μCT reconstructions (left) and mineral density mappings on 

saggital sections of the same defects (right) and (C) quantitative μCT measures of radial 

defects at 4 and 8 weeks post-surgery. Scale bar (A) 2mm, (B) 1mm. * p<0.05. 
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Role of adhesive ligand and protease-degradable crosslinker in bone formation 

 To determine the role of the adhesive ligand and protease degradable crosslinker 

GCRDVPMSMRGGDRCG (VPM)  in our biomaterial system, we next tested three types 

of hydrogels within radial segmental defects: (1) 4% PEG-maleimide hydrogels 

functionalized with 2 mM GFOGER and crosslinked with VPM, the MMP-sensitive 

crosslinker (GFOGER), (2) 4% PEG-maleimide hydrogels crosslinked with VPM (PEG-

only) and (3) PEG-maleimide hydrogels crosslinked with DTT, a small molecule 

crosslinker that is not sensitive to MMP-mediated degradation (non-degradable PEG). 

PEG hydrogels crosslinked with the VPM crosslinker peptide has previously been shown 

to degrade in response to MMP-1 andMMP-2, with kcat values of 5.25 +/- 0.95 s
-1

, 4.82 

+/- 0.79 s
-1192

. In addition, VPM is also sensitive to plasmin-mediated cleavage
191

.  At 4 

weeks, GFOGER treated defects showed bone repair (Figure 4.5B and C). However, 

defects treated with PEG-only hydrogels displayed minimal bone formation. Bone 

defects treated with non-degradable PEG hydrogels showed signs of bone resorption in 

radiographs. At 8 weeks, the radial defect size appeared larger in defects treated with 

non-degradable PEG hydrogels (Figure 4.5B). The bone volume in GFOGER-treated 

defects was significantly greater than that in both PEG-only and non-degradable PEG 

hydrogel treated defects at both 4 and 8 weeks, p<0.05 (Figure 4.6C). 

 



www.manaraa.com

75 

 

 

Figure 4.5. Radiographic and μCT evaluation of bone healing in response defects treated 

with protease-degradable GFOGER-modified or PEG-only hydrogels, and non-

degradable PEG hydrogels. (A) Representative radiographic images, (B) 3D μCT 

reconstructions  (left) and mineral density mappings on sagittal sections of the same 

defects (right), (C) quantitative μCT measures of radial defects at 4 and 8 weeks post-

surgery. (D) Diagram of composition of GFOGER, PEG-only and non-degradable 

hydrogels. Scale bar (A) 2mm, (B) 1mm. * p<0.05.
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Effect of BMP-2 dose in GFOGER hydrogels on bone healing 

 Next, we studied the dose response of BMP-2 within our GFOGER hydrogels in 

radial segmental defects. We tested the effects of 4% GFOGER functionalized PEG 

hydrogels with 0 μg, 0.03 μg, 0.06 μg, and 0.3 μg rhBMP-2, with empty tubes serving as 

a negative control. Increasing the BMP dose improved bone formation within the defects 

(Figure 4.6). As observed previously, there was minimal bone healing in defects treated 

with empty tubes. However, as seen in the 3D μCT reconstructions, consistent more than 

70% bridging was observed by week 8 beginning with the 0.03 μg dose by 8 weeks. 

Bridging occurred by 4 weeks for the 0.06 μg and 0.3 μg doses. Bone formation was 

accelerated with the 0.03 μg rhBMP-2 dose, which resulted in increased bone volume at 4 

weeks compared to empty tubes (Figure 4.6D). 8 weeks after surgery, defects treated with 

all BMP-2 doses as well as GFOGER hydrogels with no BMP-2 had higher bone 

volumes than with empty tubes. In addition, the 0.06 μg BMP-2 dose enhanced bone 

regeneration over GFOGER hydrogels alone, while surprisingly, the 0.3 μg BMP-2 dose 

did not. Transverse views of 3D μCT reconstructions reveal that this was because a 0.06 

μg BMP-2 primarily induced bone formation within the radial defect space, while causing 

minimal alterations to the structure of the ulna. In contrast, the high 0.3 μg BMP-2 dose 

resulted mainly in changes to the ulna, which over time encircled the outside of the radius 

and fused with it, with little bone formation occurring within the defect space (Figure 

4.6C).  
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Figure 4.6. Radiographic and μCT evaluation of bone healing in response to rhBMP-2 

dose in GFOGER hydrogels. (A) Representative radiographic images, (B) 3D μCT 

reconstructions (left) and mineral density mappings on sagittal sections of the same 

defects (right), (C) transverse view of 3D reconstructions and (D) μCT measures of bone 

formation at 4 and 8 weeks post-surgery. Scale bar (A) 2 mm, (B) 1 mm, (C) 1 mm. * 

p<0.05 compared to empty defect, # p<0.05 compared to GFOGER hydrogel. 
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Hydrogel degradation and BMP-2 release 

 In order to study the in vivo BMP-2 release from our hydrogels as well as the 

degradation and clearance of the hydrogel from the defect space, we labeled GFOGER 

and BMP-2 with near IR dyes, Vivotag 680 and 800 respectively. We then synthesized 

4% PEG-MAL hydrogels incorporating 2 mM labeled GFOGER and 0.3 μg of labeled 

BMP-2 and implanted them within radial defects. The defects were non-invasively 

imaged by FMT to determine the percentage of initially implanted GFOGER and BMP-2 

which remained in the defect site over a 14 day period (Figure 4.7A and B). We found 

that BMP-2 incorporated within GFOGER hydrogels underwent sustained release, with 

as much as 20% of the dose retained 14 days after surgery. When modeled as a one-phase 

decay, the half-life of BMP-2 within the defect was 3.9 days. GFOGER was released 

from the defect site slower than BMP-2. Since the GFOGER ligand is tethered to PEG-

MAL, the rate of GFOGER signal loss is also an indicator of the rate of hydrogel 

degradation. The half-life of labeled GFOGER within the defect is 6.8 days when 

modeled as one-phase decay. Safranin O/Fast Green stained GMA sections of treated 

defects did not stain positively for safranin O at 8 weeks post-surgery (Figure 4.8A and 

B), suggesting either that bone healing within the radial defect does not occur through 

endochondral ossification, or if it does occur by endochondral ossification, that all 

chondrocytes have undergone apoptosis by 8 weeks post-surgery. Bone tissue within 

defect sites in all treatment cases appeared to be non-woven at 8 weeks, and in the empty 

tube condition, the middle of the defect contained mostly cell infiltrate and little bone 

tissue (Figure 4.8B). GFOGER hydrogel remnants were not observed in any of the 

hydrogel-treated defects, indicating that the implanted hydrogel had completely degraded 

within 8 weeks. 
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Figure 4.7. Evaluation of hydrogel degradation and BMP release. (A) Representative 

FMT images and (B) FMT quantification of % implanted dose retained in radial defect 

space over time in vivo. GFOGER peptide was labelled with near-infrared dye Vivotag 

680 and rhBMP-2 was labelled with Vivotag 800. (C) In vitro release of BMP-2 from 

GFOGER hydrogels.  

  



www.manaraa.com

80 

 

 

Figure 4.8. Histological evaluation of bone healing in response to rhBMP-2 dose in 

GFOGER hydrogels at 8 weeks post surgery. GMA sections stained with safranin O/Fast 

green. u, ulna, r, radius. Scale bar (A) 0.5 mm, (B) 50 μm 
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 Effect of biomaterial scaffold/delivery on bone healing in radial defect 

 BMP-2 used clinically in delivered within a collagen foam scaffold. Therefore, in 

order to compare our biomaterial to the clinical standard, we next examined the role of 

the scaffold or delivery vehicle on bone formation in response to 0.03 μg BMP-2, the 

lowest dose that we tested in the dose-response study. 0.03 μg BMP-2 was delivered 

within a 4% PEG-maleimide hydrogel functionalized with 2 mM GFOGER (GFOGER/ 

0.03 μg rhBMP-2) or within a collagen foam scaffold (collagen/0.03 μg rhBMP-2). μCT 

evaluation revealed that GFOGER/BMP-2 hydrogel implants induced bone healing to a 

much greater extent  than collagen sponge/BMP-2 implants. 4 weeks after surgery, the 

bone volume in GFOGER/0.03 μg rhBMP-2-treated defects was significantly greater than 

in collagen/0.03 μg rhBMP-2-treated defects, p<0.05 (Figure 4.9A and B). The 

improvement in bone healing induced by GFOGER/0.03 μg rhBMP-2 treatment over 

collagen/0.03 μg rhBMP-2 treatment was even more pronounced at week 8, when the 

bone volume was three times as much in GFOGER hydrogels, p<0.001 (Figure 4.9A and 

B). There was no difference in mineral density between the two groups, although the 

mineral density for each group increased over time. Our analysis of the in vivo release of 

near IR dye-labelled BMP-2 from GFOGER gels and collagen foams indicate that a 

greater percentage of delivered BMP-2 is retained within the defect site at 1 and 5 days 

post implantation in GFOGER gels (Figure 4.10A). The half-life of BMP-2 within 

GFOGER hydrogels in vivo is higher than in collagen foams, although it did not reach 

significance (Figure 4.10A). In vitro release assays confirm that GFOGER hydrogels 

support sustained release of BMP-2 compared to collagen sponges in either PBS (Figure 

4.10B) or a collagenase I solution (Figure 4.10C).  
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Figure 4.9. μCT evaluation of radial defects treated with GFOGER/ 0.03μg rh-BMP-2 or 

collagen sponge/ 0.03μg rh-BMP-2. (A) 3D μCT reconstruction images and (B) μCT 

measures demonstrate improved bone healing in defects treated with GFOGER/ 0.03μg 

rh-BMP-2 compared to collagen sponge/ 0.03μg rh-BMP-2. *p<0.05, **p<0.01, 

***p<0.001. 
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Figure 4.10. In vitro and in vivo evaluation of Vivotag 800-labelled BMP-2 release from 

GFOGER hydrogels or collagen sponges.  (A) FMT quantification of % implanted dose 

retained in radial defect space over time in vivo. In vitro release profiles of Vivotag-

BMP-2 from GFOGER hydrogels and collagen sponges in (B) PBS and (C) in 0.1mg/ml 

collagenase I solution. 
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DISCUSSION 

 Bone grafts are used for spinal, foot and ankle fusions, revision arthroplasty 

surgeries, as well as large, non-healing bone defects caused by injury, cancer resection or 

disease. Because the gold-standard autograft treatments may cause donor pain
22

 and 

processed allografts exhibit limited remodeling
22, 89-91

, growth factor treatments such as 

Infuse (BMP-2 therapy) are becoming more widely used in the clinic. However, BMP 

treatments present cost-effectiveness limitations
95

 and clinical safety concerns
22-24, 96

, 

primarily because BMPs are delivered at supraphysiological doses. Therefore, there is a 

strong motivation to engineer safe and cost-effective materials which reduce the 

therapeutic dose of growth factors required to achieve robust healing of critical sized 

bone defects.  

 This study evaluated the effect of implanted PEG hydrogels incorporating the 

α2β1 integrin-specific ligand GFOGER as well as low doses of BMP-2 on osteoblastic 

differentiation and bone regeneration within a segmental defect.  In vitro, GFOGER 

hydrogels supported approximately equal levels of hMSC adhesion and survival as 

hydrogels functionalized with equimolar densities of the non-integrin selective adhesive 

ligand, RGD (GRGDSPC). While cell adhesion and survival was unaltered on GFOGER 

hydrogels, GFOGER hydrogels supported increased differentiation and mineralization of 

hMSCs compared to RGD. These results indicate that cell adhesion to GFOGER 

promotes osteoblastic differentiation and mineralization. Our group has previously shown 

that GFOGER coatings improve mechanical fixation of titanium implants to bone 
25, 129

, 

and adsorbed GFOGER coatings on PCL scaffolds enhance bone regeneration in a rat 

femoral defects 
130

, and these previous findings further support the pro-osteogenic 

activity of GFOGER in vitro.  

 In vivo, we found that treatment of murine radial defects with MMP-sensitive 

GFOGER-functionalized PEG hydrogels increased bone formation but failed to induce 
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consistent bridging of defects after 8 weeks. However, when we encapsulated low (0.03 

μg or 0.02 mg/ml) doses of BMP-2 within GFOGER hydrogels, we observed defect 

bridging at 8 weeks post-surgery. Since the clinical standard BMP-2 therapy involves 

BMP-2 delivery at a concentration of 1.5 mg/ml within a collagen sponge, the BMP-2 

concentration required for segmental defect healing within GFOGER hydrogels is almost 

an order of magnitude lower than the clinical standard (assuming proportional scaling 

across species).  

 Bone formation in defects treated with PEG-only or non-degradable hydrogels 

supported minimal healing, suggesting that both the presence of an adhesive ligand as 

well as protease-sensitive degradation of the hydrogel are necessary to for the enhanced 

bone healing response stimulated by GFOGER hydrogels. This result is in agreement 

with published studies
193

.  

 Analysis of the dose response of BMP-2 within our biomaterial system showed 

that while the low 0.03 μg BMP-2 was sufficient for bridging at 8 weeks, 0.06 μg of 

BMP-2 accelerated bone healing and increased the volume of bone present within the 

bridged defect at 8 weeks. Surprisingly, the highest dose tested, 0.3 μg of BMP-2, 

resulted in decreased levels of bone formation within the defect site compared to the 

medium 0.06 μg dose. We also observed that in mice treated with the high 0.3 μg BMP-2 

dose, there were gross deformations in the structure of the ulna, which expanded, 

encircled the radius and fused with it. We speculate that the observed low levels of radial 

healing in combination with expansion and deformation of the ulna in response to 

treatment with high BMP-2 dose may be due to excessively high growth factor gradients 

causing differentiation and mineralization of osteoprogenitors before they migrated into 

the radial defect site. BMP-2 is known to stimulate have both chemotactic migration
194

 

and osteoblastic differentiation
195

  and high BMP-2 concentrations may favor the latter.  

It is also possible that delivery of hydrogels incorporating the high BMP-2 dose induced 

osteolysis within the defect site. Osteolysis, end-plate resorption and subsidence are 
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potential complications of BMP-2 therapy in spinal fusions
196, 197

, and have been reported 

to occur in up to 20-70% of cases
96

.  Furthermore, BMP receptors are expressed on 

osteoclasts
198

 and multiple BMPs
199

including BMP-2
198

 stimulate osteoclastic bone 

resorption. Regardless of the mechanism, this unanticipated alteration to the ulnar 

structure and decreased bone healing in mice receiving high BMP-2 doses highlights the 

undesired effects of excessive BMP-2 signaling and further underscores the importance 

of  precisely controlling BMP-2 dose, delivery method and release kinetics in order to 

direct appropriate bone formation. Although the medium medium 0.06 μg BMP-2 dose, 

supported the greatest volume of bone formation within the radial defect, the structure of 

the ulna was slightly altered in mice treated with the 0.06 μg BMP-2 dose. In contrast, 

there was little observable impact of the low BMP-2 dose on the ulna, and the low BMP-

2 dose was sufficient to induce defect bridging. We therefore chose to use this low 0.03 

μg BMP-2 dose in our subsequent comparison of delivery vehicles.  

 GFOGER hydrogels provided sustained release of encapsulated growth factor, as 

BMP-2 was retained within the defect site for over two weeks, with a half-life of 4 days. 

Over 10% of the initial BMP-2 signal was still detected at the defect after 14 days. The 

retention time of GFOGER within the defect was even higher than for BMP-2 as the half-

life of labeled GFOGER was 7 days. As GFOGER is covalently tethered to the 4-armed 

PEG-maleimide monomer, the half-life of GFOGER localization at the defect site  is an 

indicator of the degradation and clearance rate of the gel and suggests that over 90% of 

the implanted hydrogel is degraded in 3 weeks.  

 The clinical standard for BMP-2 delivery uses an absorbable collagen sponge as 

the growth factor carrier. When we compared GFOGER hydrogels loaded with low (0.03 

μg ) doses of BMP-2 to the clinical standard, we found that GFOGER hydrogels induced 

three times as much bone formation within the radial defects compared to collagen 

sponges with the same BMP-2 dose (p<0.001). In vivo and in vitro BMP-2 release 

studies indicate that BMP-2 is released more slowly and exhibits prolonged retention 
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within the defect site with GFOGER hydrogel delivery vehicles when compared to 

collagen scaffolds. The tightly crosslinked PEG hydrogel system physically entraps 

BMP-2, and we therefore expected slower BMP-2 release from GFOGER hydrogels than 

from collagen sponges which have an open porous structure.    

 It is likely that the enhanced healing response to low dose BMP-2 delivery within 

GFOGER hydrogel scaffolds in this study are due to a combination of sustained delivery 

of of BMP-2 from the hydrogels as well as the intrinsic pro-osteogenic bioactivity of the 

GFOGER ligand compared to collagen foams. Although collagen scaffolds are approved 

for clinical applications
200

 and have demonstrated favorable cell adhesion properties
201

, 

collagen scaffold implants without delivered growth factors do not induce improvements 

in bone formation
202

. In contrast to collagen sponges, we have observed in this study that 

GFOGER-functionalized PEG hydrogels without encapsulated growth factors promote 

bone regeneration in our study. Other studies have confirmed osteogenic GFOGER 

bioactivity by demonstrating that GFOGER coatings upregulate in vivo osseointegration 

and skeletal regeneration
25, 129, 130

.  In addition, osteoblastic differentiation on GFOGER 

coated surfaces exceed differentiation on collagen coated surfaces, indicating that the 

GFOGER peptide has a greater osteogenic effect than its parent molecule, likely due to 

specific α2β1 integrin specificity achieved by the removal of extraneous collagen 

domains which do not upregulate osteoblastic signaling
128

.  

 Our biomaterial strategy benefits from several advantages. The GFOGER 

hydrogel is completely synthetic, well-defined and highly tunable extracellular matrix 

analog. The modular PEG-MAL hydrogel system also affords great versatility in 

biomaterial design by allowing precise control of PEG weight percent and ligand density, 

proteolytic degradation rate, incorporated growth factor dose, as well as possible 

combinations of ligands or growth factors, suggesting that the results presented here can 

be further optimized. Furthermore, many components of the hydrogel system such as 

PEG-MAL, GFOGER adhesive peptide and VPM crosslinker peptide are commercially 
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available, easy to fabricate and much less expensive than recombinant growth factors. 

The low BMP-2 dose required to support defect bridging with GFOGER hydrogels 

increases the cost-effectiveness of this material while also potentially limiting adverse 

responses currently observed with BMP therapies. In addition, PEG is well tolerated in 

vivo
203, 204

 and is clinically approved in multiple products, which suggests that GFOGER 

hydrogels would be safe for therapeutic use. MMP-sensitive crosslinks within our 

bioartificial matrices allows for fairly rapid, ‘on demand’ release of BMP-2 driven by 

cell-mediated proteolysis. Finally, our PEG-maleimide-based biofunctionalized matrices 

are highly versatile and tunable, as multiple hydrogel properties such as porosity, 

stiffness, degradation rate, adhesive functionality, ligand density and incorporated growth 

factor type and release profile may be tuned by varying the hydrogel composition. 

 Despite the aforementioned advantages of our bioartificial hydrogel matrices, our 

biomaterial has certain limitations. First, BMP-2 is encapsulated within the PEG hydrogel 

and may therefore have reduced residence time within the defect compared to strategies 

which utilize covalent growth factor immobilization affinity to immobilized groups. 

Second, because we have chosen a cell-free biomaterial therapeutic strategy, bone 

formation within our biomaterial relies on endogenous cell invasion. As a result, the 

biomaterial design requires a balance between facilitating cell invasion, which is favored 

by loose and rapidly degrading polymer networks, with the sustained of BMP-2 release, 

which is favored by tight networks and slow biomaterial. Third, we pre-cast hydrogels 

within an impermeable polyimide sleeve to improve the handling of soft hydrogels for 

implantation. Although the plastic sleeve was laser machined with holes to improve 

nutrient transport and cell invasion, the use of an impermeable plastic sleeve is not ideal 

and may contribute to decreased bone healing. Lastly, because the murine radial 

segmental defect model as well as the non-porous sleeve for biomaterial delivery are not 

widely used, it may be challenging to compare our data to other studies of bone healing 

in mice. 
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 In conclusion, we have developed a synthetic bioartificial PEG-MAL based 

matrix which is functionalized with the α2β1 integrin-specific ligand GFOGER and 

provides sustained release of BMP-2. These GFOGER hydrogels lacking BMP-2 

promote bone regeneration in radial segmental defects, while GFOGER hydrogels 

incorporating low-dose BMP-2 induce bridging and improved bone formation compared 

to clinical standard collagen sponges delivering the same BMP-2 dose. Therefore, 

GFOGER-functionalized PEG-MAL hydrogels incorporating low dose BMP-2 may have 

therapeutic potential as biomaterial bone graft substitutes.  
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CHAPTER 8: FUTURE CONSIDERATIONS 

Role of beta 1 integrins in bone formation 

 We have observed that β1 integrin deletion in osteochondro progenitor cells under 

the Twist 2 promoter impairs calvarial and vertebral mineralization, while integrin 

deletion under the Osterix promoter induces growth abnormalities, delayed calvarial 

ossification, incisor defects and under-mineralized femurs. While these empirical 

observations suggest that β1 integrins play a crucial role in early bone development by 

regulating osteoprogenitor cells, further studies are required to establish the mechanism 

of regulation. We are currently investigating the mechanism by which β1 integrins 

regulate calvarial development by analyzing the gene expression profiles of calvarial 

tissue in  itgβ1
cKO (OSX) 

embryos at E18.5, shortly after the onset of cre recombinase 

expression in the calvarium. We are also investigating osteoblast and osteoclast numbers, 

as well as chondrocyte morphology within the calvaria and femurs of in itgβ1
cKO (OSX)  

mice in order to determine the cell types responsible for the reduced mineral density, and  

growth abnormalities.   

 We have also observed that that β1 integrin deletion in osteochondro progenitor 

cells under the Twist 2 results in embryonic lethality which occurs after E13.5. By E18.5, 

surviving in itgβ1
cKO (TW2)

 embryos are abnormally small and exhibit impaired skeletal 

mineralization as well as umbilical cord deformities. However, by E18.5, degenerated 

implantation sites are visible on the uterine horn, indicating that developmental 

impairments due to β1 integrin knockout in Twist 2 expressing cells occurs at an earlier 

stage. Future work may include analyzing embryos at intermediate stages such as E15.5 

to determine the stage at which normal embryonic development can no longer occur in 

the absence of β1 integrins in mesodermal cells. Detailed histological analysis of these 

embryos will be required to determine the cause of embryonic lethality. This study will 

elucidate the role of β1 integrins on prenatal development. 
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 We have also found in this study that β1 integrin knockout in mature osteoblasts 

and osteocytes result in only mild alterations to bone phenotypes. This suggests that 

osteoblasts do not require β1 integrins to function, which is surprising given that most 

collagen receptors are β1 integrins. This observation raises the question of how 

osteoblasts adapt to the loss of β1 integrins and maintain necessary adhesions. It is 

possible that compensations in integrin expression and ECM may occur in osteoblasts in 

response to β1 integrin deletions.  

 The β1 sub-family of integrins includes 12 different integrins. Therefore deletions 

of β1 integrin partner α subunits individually or in combination will elucidate the roles of 

specific integrins on bone development as well as redundancies among these integrins in 

regulating the formation of skeletal elements.  

Integrin-specific PEG hydrogels and bone healing 

 

Biomaterials for Enhanced Bone Healing 

We have shown that engineered GFOGER functionalized PEG matrices promote bone 

healing and induce robust bone regeneration within a murine radial segmental defect. 

Furthermore, these engineered bioartificial matrices bridge segmental defects when 

combined with low-dose BMP-2 and induce improved bone regeneration compared when 

compared to collagen sponges incorporating low-dose BMP-2. While these results 

demonstrate the clinical potential of GFOGER PEG hydrogels, the design flexibility of 

our biomaterial system allows us to tune multiple properties of the hydrogel in order to 

optimize its performance as a bone graft substitute.  Although delivery of BMP-2 alone 

has been clinically successful in inducing bone formation within large defects, bone 

healing in large defects is often limited by insufficient vascularization
205

. Furthermore, 

combinations of growth factors such as BMP-2 and PDGF have been shown to promote 

healing within calvarial defects 
206

. Therefore, delivery of angiogenic growth factors or 
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combinations of growth factors within GFOGER hydrogels could be used to promote 

bone regeneration. We are currently investigating the effect on VEFG delivery from 

GFOGER PEG hydrogels on bone healing, In this study, we used a relatively low 4% 

weight by volume concentration of PEG-maleimide as well as the VPM crosslinker 

which undergoes rapid MMP-mediated cleavage to fabricate our hydrogels. A design 

variation using higher PEG concentrations and peptide crosslinkers which undergo less 

rapid cleavage than VPM would provide slower release of encapsulated growth factor, 

which may yield further enhancements in bone healing. The growth factor release profile 

may also be tuned by covalently tethering the growth factor to the PEG-maleimide which 

we have previously demonstrated with VEGF delivery from PEG hydrogels. Because 

rhBMP-2 lacks free cysteines, it is not amenable to Michael addition-mediated 

immobilization to the PEG-maleimide monomer. However, a modified sequence of 

BMP-2 containing free cysteines could be employed to immobilize BMP-2 and further 

improve its release kinetcs. The BMP-2 release profile may also be modified by 

covalently immobilizing BMP-2 affinity domains within the hydrogel. While this study 

has focused on the cell-free delivery of growth factors from GFOGER hydrogels, these 

hydrogels may also be suitable carriers for the delivery of encapsulated stem cells. Such a 

strategy may be especially valuable in older patients or patients with defective stem cells. 

 

GFOGER-Modified PEG Hydrogels for Basic Science Studies 

Integrin-specific GFOGER functionalized PEG hydrogels present a useful biomaterial 

system for basic science studies on the role of bioactive ligands on cell behaviors. PEG 

provides a ‘clean slate’ protein resistant background onto which desired bioactive 

molecules may be functionalized at controlled densities. In addition, the stiffness of the 

hydrogels may be independently controlled by varying the PEG concentration. We are 

currently using PEG maleimide hydrogels to study the interaction of environmental cues 
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such as substrate stiffness, adhesive ligand and ligand density on cell morphology, 

osteoblastic differentiation and mineralization.  

 

Transgenic Models to Study Osteoprogenitor Invasion into Defect 

Bone healing within large defects may be limited by multiple factors such as 

vascularization and osteoprogenitor invasion into the defect which are challenging to 

monitor non-invasively in vivo and are also difficult to model in vitro. Therefore, a 

method which enables non-invasive measurement osteoprogenitor invasion would 

facilitate the rational design of biomaterials for the treatment of large non-healing 

defects.We have bred transgenic mice in which osteochondro progenitor cells express 

luciferase (under the Twist 2 promoter), which enables non-invasive imaging and 

quantification of osteochondro progenitors. Using this transgenic model, we may 

investigate the temporal profile of osteoprogenitor recruitment in response to different 

biomaterials and determine the correlation between these profiles and bone healing 

outcomes. 



www.manaraa.com

94 

 

  

REFERENCES 

 

1. Park, J.H. et al. The responses to surface wettability gradients induced by chitosan 

nanofilms on microtextured titanium mediated by specific integrin receptors. 

Biomaterials 33, 7386-7393 (2012). 

2. Takeuchi, Y. & Matsumoto, T. Interaction between Collagen and Alpha-2-Beta-1-

Integrin Enhances Tyrosine Phosphorylation of Focal Adhesion Kinase and 

Osteoblast Differentiation. Journal of Bone and Mineral Research 10, S303-S303 

(1995). 

3. Xiao, G., Wang, D., Benson, M.D., Karsenty, G. & Franceschi, R.T. Role of the 

alpha2-integrin in osteoblast-specific gene expression and activation of the Osf2 

transcription factor. J Biol Chem 273, 32988-32994 (1998). 

4. Jikko, A., Harris, S.E., Chen, D., Mendrick, D.L. & Damsky, C.H. Collagen 

integrin receptors regulate early osteoblast differentiation induced by BMP-2. J 

Bone Miner Res 14, 1075-1083 (1999). 

5. Mizuno, M., Fujisawa, R. & Kuboki, Y. Type I collagen-induced osteoblastic 

differentiation of bone-marrow cells mediated by collagen-alpha2beta1 integrin 

interaction. J Cell Physiol 184, 207-213 (2000). 

6. Gronthos, S., Simmons, P.J., Graves, S.E. & Robey, P.G. Integrin-mediated 

interactions between human bone marrow stromal precursor cells and the 

extracellular matrix. Bone 28, 174-181 (2001). 



www.manaraa.com

95 

 

7. Moursi, A.M. et al. Fibronectin regulates calvarial osteoblast differentiation. J 

Cell Sci 109 ( Pt 6), 1369-1380 (1996). 

8. Moursi, A.M., Globus, R.K. & Damsky, C.H. Interactions between integrin 

receptors and fibronectin are required for calvarial osteoblast differentiation in 

vitro. J Cell Sci 110 ( Pt 18), 2187-2196 (1997). 

9. Hamidouche, Z. et al. Priming integrin alpha5 promotes human mesenchymal 

stromal cell osteoblast differentiation and osteogenesis. Proc Natl Acad Sci U S A 

106, 18587-18591 (2009). 

10. Olivares-Navarrete, R. et al. Integrin alpha2beta1 plays a critical role in osteoblast 

response to micron-scale surface structure and surface energy of titanium 

substrates. Proc Natl Acad Sci U S A 105, 15767-15772 (2008). 

11. Phillips, J.A. et al. Role for beta1 integrins in cortical osteocytes during acute 

musculoskeletal disuse. Matrix Biol 27, 609-618 (2008). 

12. Litzenberger, J.B., Kim, J.B., Tummala, P. & Jacobs, C.R. Beta1 integrins 

mediate mechanosensitive signaling pathways in osteocytes. Calcif Tissue Int 86, 

325-332 (2010). 

13. Zimmerman, D., Jin, F., Leboy, P., Hardy, S. & Damsky, C. Impaired bone 

formation in transgenic mice resulting from altered integrin function in 

osteoblasts. Developmental biology 220, 2-15 (2000). 

14. Bucholz, R.W. Nonallograft osteoconductive bone graft substitutes. Clin Orthop 

Relat Res, 44-52 (2002). 

15. Finkemeier, C.G. Bone-grafting and bone-graft substitutes. J Bone Joint Surg Am 

84-A, 454-464 (2002). 



www.manaraa.com

96 

 

16. Giannoudis, P.V., Dinopoulos, H. & Tsiridis, E. Bone substitutes: an update. 

Injury 36 Suppl 3, S20-27 (2005). 

17. Kretlow, J.D. & Mikos, A.G. Review: mineralization of synthetic polymer 

scaffolds for bone tissue engineering. Tissue Eng 13, 927-938 (2007). 

18. Iwaniec, U.T. et al. Effects of disrupted beta1-integrin function on the skeletal 

response to short-term hindlimb unloading in mice. Journal of applied physiology 

98, 690-696 (2005). 

19. Globus, R.K. et al. Skeletal phenotype of growing transgenic mice that express a 

function-perturbing form of beta1 integrin in osteoblasts. Calcif Tissue Int 76, 39-

49 (2005). 

20. Dacquin, R., Starbuck, M., Schinke, T. & Karsenty, G. Mouse alpha1(I)-collagen 

promoter is the best known promoter to drive efficient Cre recombinase 

expression in osteoblast. Dev Dyn 224, 245-251 (2002). 

21. Stephens, L.E. et al. Deletion of beta 1 integrins in mice results in inner cell mass 

failure and peri-implantation lethality. Genes Dev 9, 1883-1895 (1995). 

22. De Long, W.G., Jr. et al. Bone grafts and bone graft substitutes in orthopaedic 

trauma surgery. A critical analysis. J Bone Joint Surg Am 89, 649-658 (2007). 

23. Yoon, S.T. & Boden, S.D. Osteoinductive molecules in orthopaedics: basic 

science and preclinical studies. Clin Orthop Relat Res, 33-43 (2002). 

24. Bishop, G.B. & Einhorn, T.A. Current and future clinical applications of bone 

morphogenetic proteins in orthopaedic trauma surgery. Int Orthop 31, 721-727 

(2007). 



www.manaraa.com

97 

 

25. Reyes, C.D., Petrie, T.A., Burns, K.L., Schwartz, Z. & Garcia, A.J. Biomolecular 

surface coating to enhance orthopaedic tissue healing and integration. 

Biomaterials 28, 3228-3235 (2007). 

26. Hynes, R.O. Integrins: bidirectional, allosteric signaling machines. Cell 110, 673-

687 (2002). 

27. Giancotti, F.G. & Ruoslahti, E. Integrin signaling. Science 285, 1028-1032 

(1999). 

28. Petit, V. & Thiery, J.P. Focal adhesions: structure and dynamics. Biol Cell 92, 

477-494 (2000). 

29. Bourdoulous, S., Orend, G., MacKenna, D.A., Pasqualini, R. & Ruoslahti, E. 

Fibronectin matrix regulates activation of RHO and CDC42 GTPases and cell 

cycle progression. J Cell Biol 143, 267-276 (1998). 

30. Chen, C.S., Mrksich, M., Huang, S., Whitesides, G.M. & Ingber, D.E. Geometric 

control of cell life and death. Science 276, 1425-1428 (1997). 

31. Gronthos, S., Stewart, K., Graves, S.E., Hay, S. & Simmons, P.J. Integrin 

expression and function on human osteoblast-like cells. Journal of Bone and 

Mineral Research 12, 1189-1197 (1997). 

32. Bennett, J.H., Carter, D.H., Alavi, A.L., Beresford, J.N. & Walsh, S. Patterns of 

integrin expression in a human mandibular explant model of osteoblast 

differentiation. Arch Oral Biol 46, 229-238 (2001). 

33. Grzesik, W.J. & Robey, P.G. Bone matrix RGD glycoproteins: 

immunolocalization and interaction with human primary osteoblastic bone cells in 

vitro. J Bone Miner Res 9, 487-496 (1994). 



www.manaraa.com

98 

 

34. Clover, J., Dodds, R.A. & Gowen, M. Integrin subunit expression by human 

osteoblasts and osteoclasts in situ and in culture. J Cell Sci 103 ( Pt 1), 267-271 

(1992). 

35. Hughes, D.E., Salter, D.M., Dedhar, S. & Simpson, R. Integrin expression in 

human bone. J Bone Miner Res 8, 527-533 (1993). 

36. Ganta, D.R., McCarthy, M.B. & Gronowicz, G.A. Ascorbic acid alters collagen 

integrins in bone culture. Endocrinology 138, 3606-3612 (1997). 

37. Saito, T., Albelda, S.M. & Brighton, C.T. Identification of integrin receptors on 

cultured human bone cells. J Orthop Res 12, 384-394 (1994). 

38. Yu, Y.M., Becvar, R., Yamada, Y. & Reddi, A.H. Changes in the gene expression 

of collagens, fibronectin, integrin and proteoglycans during matrix-induced bone 

morphogenesis. Biochem Biophys Res Commun 177, 427-432 (1991). 

39. Brighton, C.T. & Albelda, S.M. Identification of integrin cell-substratum 

adhesion receptors on cultured rat bone cells. J Orthop Res 10, 766-773 (1992). 

40. Castoldi, M. et al. Osteoblastic cells from rat long bone. II: Adhesion to substrata 

and integrin expression in primary and propagated cultures. Cell Biol Int 21, 7-16 

(1997). 

41. Mizuno, M., Fujisawa, R. & Kuboki, Y. Type I collagen-induced osteoblastic 

differentiation of bone-marrow cells mediated by collagen-alpha 2 beta 1 integrin 

interaction. Journal of Cellular Physiology 184, 207-213 (2000). 

42. Mizuno, M. & Kuboki, Y. Osteoblast-related gene expression of bone marrow 

cells during the osteoblastic differentiation induced by type I collagen. J Biochem 

129, 133-138 (2001). 



www.manaraa.com

99 

 

43. Suzawa, M. et al. Stimulation of Smad1 transcriptional activity by Ras-

extracellular signal-regulated kinase pathway: a possible mechanism for collagen-

dependent osteoblastic differentiation. J Bone Miner Res 17, 240-248 (2002). 

44. Takeuchi, Y. et al. Differentiation and transforming growth factor-beta receptor 

down-regulation by collagen-alpha2beta1 integrin interaction is mediated by focal 

adhesion kinase and its downstream signals in murine osteoblastic cells. J Biol 

Chem 272, 29309-29316 (1997). 

45. Tamura, Y. et al. Focal adhesion kinase activity is required for bone 

morphogenetic protein--Smad1 signaling and osteoblastic differentiation in 

murine MC3T3-E1 cells. J Bone Miner Res 16, 1772-1779 (2001). 

46. Xiao, G. et al. MAPK pathways activate and phosphorylate the osteoblast-specific 

transcription factor, Cbfa1. J Biol Chem 275, 4453-4459 (2000). 

47. Schneider, G.B., Zaharias, R. & Stanford, C. Osteoblast integrin adhesion and 

signaling regulate mineralization. J Dent Res 80, 1540-1544 (2001). 

48. Van der Velde-Zimmermann, D. et al. Fibronectin distribution in human bone 

marrow stroma: matrix assembly and tumor cell adhesion via alpha5 beta1 

integrin. Exp Cell Res 230, 111-120 (1997). 

49. Globus, R.K. et al. Fibronectin is a survival factor for differentiated osteoblasts. J 

Cell Sci 111 ( Pt 10), 1385-1393 (1998). 

50. Kaabeche, K. et al. Cbl-mediated ubiquitination of alpha5 integrin subunit 

mediates fibronectin-dependent osteoblast detachment and apoptosis induced by 

FGFR2 activation. J Cell Sci 118, 1223-1232 (2005). 



www.manaraa.com

100 

 

51. Salter, D.M., Robb, J.E. & Wright, M.O. Electrophysiological responses of 

human bone cells to mechanical stimulation: evidence for specific integrin 

function in mechanotransduction. J Bone Miner Res 12, 1133-1141 (1997). 

52. Martino, M.M. et al. Controlling integrin specificity and stem cell differentiation 

in 2D and 3D environments through regulation of fibronectin domain stability. 

Biomaterials 30, 1089-1097 (2009). 

53. Cheng, S.L., Lai, C.F., Blystone, S.D. & Avioli, L.V. Bone mineralization and 

osteoblast differentiation are negatively modulated by integrin alpha(v)beta3. J 

Bone Miner Res 16, 277-288 (2001). 

54. Huang, J. et al. Impact of order and disorder in RGD nanopatterns on cell 

adhesion. Nano Lett 9, 1111-1116 (2009). 

55. Hartman, G.D. & Duggan, M.E. alpha(v)beta(3) Integrin antagonists as inhibitors 

of bone resorption. Expert opinion on investigational drugs 9, 1281-1291 (2000). 

56. Ross, F.P. et al. Interactions between the bone matrix proteins osteopontin and 

bone sialoprotein and the osteoclast integrin alpha v beta 3 potentiate bone 

resorption. J Biol Chem 268, 9901-9907 (1993). 

57. Fassler, R. & Meyer, M. Consequences of lack of beta 1 integrin gene expression 

in mice. Genes Dev 9, 1896-1908 (1995). 

58. Sauer, B. Inducible gene targeting in mice using the Cre/lox system. Methods 14, 

381-392 (1998). 

59. Nagy, A. Cre recombinase: the universal reagent for genome tailoring. Genesis 

26, 99-109 (2000). 



www.manaraa.com

101 

 

60. Lewandoski, M. Conditional control of gene expression in the mouse. Nat Rev 

Genet 2, 743-755 (2001). 

61. Gossen, M. & Bujard, H. Studying gene function in eukaryotes by conditional 

gene inactivation. Annu Rev Genet 36, 153-173 (2002). 

62. Principles of Bone Biology, Vol. 1, Edn. 2. (2002). 

63. Gelse, K., Poschl, E. & Aigner, T. Collagens--structure, function, and 

biosynthesis. Adv Drug Deliv Rev 55, 1531-1546 (2003). 

64. Robey, P.G., John, P.B., Lawrence, G.R. & Gideon, A.R. in Principles of Bone 

Biology (Second Edition) 225-237 (Academic Press, San Diego; 2002). 

65. Li, L., Cserjesi, P. & Olson, E.N. Dermo-1: a novel twist-related bHLH protein 

expressed in the developing dermis. Developmental biology 172, 280-292 (1995). 

66. Bialek, P. et al. A twist code determines the onset of osteoblast differentiation. 

Developmental cell 6, 423-435 (2004). 

67. Elefteriou, F. & Yang, X. Genetic mouse models for bone studies--strengths and 

limitations. Bone 49, 1242-1254 (2011). 

68. Yu, K. et al. Conditional inactivation of FGF receptor 2 reveals an essential role 

for FGF signaling in the regulation of osteoblast function and bone growth. 

Development 130, 3063-3074 (2003). 

69. Zhang, M. et al. Osteoblast-specific knockout of the insulin-like growth factor 

(IGF) receptor gene reveals an essential role of IGF signaling in bone matrix 

mineralization. J Biol Chem 277, 44005-44012 (2002). 

70. Tan, X. et al. Smad4 is required for maintaining normal murine postnatal bone 

homeostasis. J Cell Sci 120, 2162-2170 (2007). 



www.manaraa.com

102 

 

71. Karsenty, G., Kronenberg, H.M. & Settembre, C. Genetic control of bone 

formation. Annual review of cell and developmental biology 25, 629-648 (2009). 

72. Ducy, P., Zhang, R., Geoffroy, V., Ridall, A.L. & Karsenty, G. Osf2/Cbfa1: a 

transcriptional activator of osteoblast differentiation. Cell 89, 747-754 (1997). 

73. Karsenty, G. & Wagner, E.F. Reaching a genetic and molecular understanding of 

skeletal development. Developmental cell 2, 389-406 (2002). 

74. Naski, M.C., Wang, Q., Xu, J. & Ornitz, D.M. Graded activation of fibroblast 

growth factor receptor 3 by mutations causing achondroplasia and thanatophoric 

dysplasia. Nature genetics 13, 233-237 (1996). 

75. Hartmann, C. Skeletal development--Wnts are in control. Molecules and cells 24, 

177-184 (2007). 

76. Kobayashi, T. et al. Indian hedgehog stimulates periarticular chondrocyte 

differentiation to regulate growth plate length independently of PTHrP. The 

Journal of clinical investigation 115, 1734-1742 (2005). 

77. Barna, M. & Niswander, L. Visualization of cartilage formation: insight into 

cellular properties of skeletal progenitors and chondrodysplasia syndromes. 

Developmental cell 12, 931-941 (2007). 

78. Hinoi, E. et al. Runx2 inhibits chondrocyte proliferation and hypertrophy through 

its expression in the perichondrium. Genes Dev 20, 2937-2942 (2006). 

79. Komori, T. et al. Targeted disruption of Cbfa1 results in a complete lack of bone 

formation owing to maturational arrest of osteoblasts. Cell 89, 755-764 (1997). 



www.manaraa.com

103 

 

80. Nakashima, K. et al. The novel zinc finger-containing transcription factor osterix 

is required for osteoblast differentiation and bone formation. Cell 108, 17-29 

(2002). 

81. Howard, T.D. et al. Mutations in TWIST, a basic helix-loop-helix transcription 

factor, in Saethre-Chotzen syndrome. Nature genetics 15, 36-41 (1997). 

82. Tsuji, K. et al. BMP2 activity, although dispensable for bone formation, is 

required for the initiation of fracture healing. Nature genetics 38, 1424-1429 

(2006). 

83. Gerstenfeld, L.C., Cullinane, D.M., Barnes, G.L., Graves, D.T. & Einhorn, T.A. 

Fracture healing as a post-natal developmental process: molecular, spatial, and 

temporal aspects of its regulation. Journal of cellular biochemistry 88, 873-884 

(2003). 

84. Wang, K. et al. Analysis of fracture healing by large-scale transcriptional profile 

identified temporal relationships between metalloproteinase and ADAMTS 

mRNA expression. Matrix Biol 25, 271-281 (2006). 

85. Niikura, T., Hak, D.J. & Reddi, A.H. Global gene profiling reveals a 

downregulation of BMP gene expression in experimental atrophic nonunions 

compared to standard healing fractures. J Orthop Res 24, 1463-1471 (2006). 

86. Cho, T.J., Gerstenfeld, L.C. & Einhorn, T.A. Differential temporal expression of 

members of the transforming growth factor beta superfamily during murine 

fracture healing. J Bone Miner Res 17, 513-520 (2002). 

87. Johnson, E.E., Urist, M.R. & Finerman, G.A. Resistant nonunions and partial or 

complete segmental defects of long bones. Treatment with implants of a 



www.manaraa.com

104 

 

composite of human bone morphogenetic protein (BMP) and autolyzed, antigen-

extracted, allogeneic (AAA) bone. Clin Orthop Relat Res, 229-237 (1992). 

88. Laurencin, C., Khan, Y. & El-Amin, S.F. Bone graft substitutes. Expert Rev Med 

Devices 3, 49-57 (2006). 

89. Finkemeier, C.G. Bone-grafting and bone-graft substitutes. J Bone Joint Surg.Am. 

84-A, 454-464 (2002). 

90. Sorger, J.I. et al. Allograft fractures revisited. Clin Orthop Relat Res, 66-74 

(2001). 

91. Mankin, H.J., Hornicek, F.J. & Raskin, K.A. Infection in massive bone allografts. 

Clin Orthop Relat Res, 210-216 (2005). 

92. Boden, S.D. The ABCs of BMPs. Orthop Nurs 24, 49-52; quiz 53-44 (2005). 

93. Cancedda, R., Giannoni, P. & Mastrogiacomo, M. A tissue engineering approach 

to bone repair in large animal models and in clinical practice. Biomaterials 28, 

4240-4250 (2007). 

94. Cahill, K.S., Chi, J.H., Day, A. & Claus, E.B. Prevalence, complications, and 

hospital charges associated with use of bone-morphogenetic proteins in spinal 

fusion procedures. JAMA : the journal of the American Medical Association 302, 

58-66 (2009). 

95. Desai, B.M. Osteobiologics. Am J Orthop (Belle Mead NJ) 36, 8-11 (2007). 

96. Carragee, E.J., Hurwitz, E.L. & Weiner, B.K. A critical review of recombinant 

human bone morphogenetic protein-2 trials in spinal surgery: emerging safety 

concerns and lessons learned. The spine journal : official journal of the North 

American Spine Society 11, 471-491 (2011). 



www.manaraa.com

105 

 

97. Morra, M. et al. Surface analysis and effects on interfacial bone microhardness of 

collagen-coated titanium implants: a rabbit model. Int J Oral Maxillofac Implants 

20, 23-30 (2005). 

98. Schliephake, H. et al. Effect of immobilized bone morphogenic protein 2 coating 

of titanium implants on peri-implant bone formation. Clin Oral Implants Res 16, 

563-569 (2005). 

99. Svehla, M., Morberg, P., Bruce, W. & Walsh, W.R. No effect of a type I collagen 

gel coating in uncemented implant fixation. J Biomed Mater Res B Appl Biomater 

74, 423-428 (2005). 

100. Rammelt, S. et al. Coating of titanium implants with collagen, RGD peptide and 

chondroitin sulfate. Biomaterials 27, 5561-5571 (2006). 

101. Liu, X. et al. Repairing goat tibia segmental bone defect using scaffold cultured 

with mesenchymal stem cells. J Biomed Mater Res B Appl Biomater. 

102. Caiazza, S. et al. Evaluation of guided bone regeneration in rabbit femur using 

collagen membranes. Implant Dent 9, 219-225 (2000). 

103. d'Aquino, R. et al. Human mandible bone defect repair by the grafting of dental 

pulp stem/progenitor cells and collagen sponge biocomplexes. Eur Cell Mater 18, 

75-83 (2009). 

104. Ben-Ari, A. et al. Isolation and implantation of bone marrow-derived 

mesenchymal stem cells with fibrin micro beads to repair a critical-size bone 

defect in mice. Tissue Eng Part A 15, 2537-2546 (2009). 



www.manaraa.com

106 

 

105. Kim, S.J., Jang, J.D. & Lee, S.K. Treatment of long tubular bone defect of rabbit 

using autologous cultured osteoblasts mixed with fibrin. Cytotechnology 54, 115-

120 (2007). 

106. Karp, J.M., Sarraf, F., Shoichet, M.S. & Davies, J.E. Fibrin-filled scaffolds for 

bone-tissue engineering: An in vivo study. J Biomed Mater Res A 71, 162-171 

(2004). 

107. Perka, C. et al. Segmental bone repair by tissue-engineered periosteal cell 

transplants with bioresorbable fleece and fibrin scaffolds in rabbits. Biomaterials 

21, 1145-1153 (2000). 

108. Solchaga, L.A., Dennis, J.E., Goldberg, V.M. & Caplan, A.I. Hyaluronic acid-

based polymers as cell carriers for tissue-engineered repair of bone and cartilage. 

J Orthop Res 17, 205-213 (1999). 

109. Paderni, S., Terzi, S. & Amendola, L. Major bone defect treatment with an 

osteoconductive bone substitute. Chir Organi Mov 93, 89-96 (2009). 

110. Barros, R.R. et al. Effect of biofunctionalized implant surface on osseointegration: 

a histomorphometric study in dogs. Braz Dent J 20, 91-98 (2009). 

111. Lin, H., Xu, H., Zhang, X. & de Groot, K. Tensile tests of interface between bone 

and plasma-sprayed HA coating-titanium implant. J Biomed Mater Res 43, 113-

122 (1998). 

112. Kurkalli, B.G., Gurevitch, O., Sosnik, A., Cohn, D. & Slavin, S. Repair of bone 

defect using bone marrow cells and demineralized bone matrix supplemented with 

polymeric materials. Curr Stem Cell Res Ther 5, 49-56. 



www.manaraa.com

107 

 

113. Suckow, M.A., Voytik-Harbin, S.L., Terril, L.A. & Badylak, S.F. Enhanced bone 

regeneration using porcine small intestinal submucosa. J Invest Surg 12, 277-287 

(1999). 

114. Graf, H.L., Stoeva, S., Armbruster, F.P., Neuhaus, J. & Hilbig, H. Effect of bone 

sialoprotein and collagen coating on cell attachment to TICER and pure titanium 

implant surfaces. Int J Oral Maxillofac Surg 37, 634-640 (2008). 

115. Shakesheff, K., Cannizzaro, S. & Langer, R. Creating biomimetic micro-

environments with synthetic polymer-peptide hybrid molecules. J Biomater Sci 

Polym Ed 9, 507-518 (1998). 

116. Emsley, J., Knight, C.G., Farndale, R.W. & Barnes, M.J. Structure of the integrin 

alpha2beta1-binding collagen peptide. J Mol Biol 335, 1019-1028 (2004). 

117. Knight, C.G. et al. Identification in collagen type I of an integrin alpha2 beta1-

binding site containing an essential GER sequence. J Biol Chem 273, 33287-

33294 (1998). 

118. Leahy, D.J., Aukhil, I. & Erickson, H.P. 2.0 A crystal structure of a four-domain 

segment of human fibronectin encompassing the RGD loop and synergy region. 

Cell 84, 155-164 (1996). 

119. Aota, S., Nomizu, M. & Yamada, K.M. The short amino acid sequence Pro-His-

Ser-Arg-Asn in human fibronectin enhances cell-adhesive function. J Biol Chem 

269, 24756-24761 (1994). 

120. Humphries, M.J., Akiyama, S.K., Komoriya, A., Olden, K. & Yamada, K.M. 

Identification of an alternatively spliced site in human plasma fibronectin that 

mediates cell type-specific adhesion. J Cell Biol 103, 2637-2647 (1986). 



www.manaraa.com

108 

 

121. Komoriya, A. et al. The minimal essential sequence for a major cell type-specific 

adhesion site (CS1) within the alternatively spliced type III connecting segment 

domain of fibronectin is leucine-aspartic acid-valine. J Biol Chem 266, 15075-

15079 (1991). 

122. Petrie, T.A., Capadona, J.R., Reyes, C.D. & Garcia, A.J. Integrin specificity and 

enhanced cellular activities associated with surfaces presenting a recombinant 

fibronectin fragment compared to RGD supports. Biomaterials 27, 5459-5470 

(2006). 

123. Barber, T.A. et al. Peri-implant bone formation and implant integration strength 

of peptide-modified p(AAM-co-EG/AAC) interpenetrating polymer network-

coated titanium implants. J Biomed Mater Res A 80, 306-320 (2007). 

124. Wojtowicz, A.M. et al. Coating of biomaterial scaffolds with the collagen-

mimetic peptide GFOGER for bone defect repair. Biomaterials 31, 2574-2582. 

125. Thorwarth, M. et al. Bioactivation of an anorganic bone matrix by P-15 peptide 

for the promotion of early bone formation. Biomaterials 26, 5648-5657 (2005). 

126. Morton, L.F. et al. Conformation-dependent platelet adhesion to collagen 

involving integrin alpha 2 beta 1-mediated and other mechanisms: multiple alpha 

2 beta 1-recognition sites in collagen type I. Biochem J 299 ( Pt 3), 791-797 

(1994). 

127. Knight, C.G. et al. The collagen-binding A-domains of integrins alpha(1)beta(1) 

and alpha(2)beta(1) recognize the same specific amino acid sequence, GFOGER, 

in native (triple-helical) collagens. J Biol Chem 275, 35-40 (2000). 



www.manaraa.com

109 

 

128. Reyes, C.D. & Garcia, A.J. Engineering integrin-specific surfaces with a triple-

helical collagen-mimetic peptide. J Biomed Mater Res A 65, 511-523 (2003). 

129. Reyes, C.D. & Garcia, A.J. Alpha2beta1 integrin-specific collagen-mimetic 

surfaces supporting osteoblastic differentiation. J Biomed Mater Res A 69, 591-

600 (2004). 

130. Wojtowicz, A.M. et al. Coating of biomaterial scaffolds with the collagen-

mimetic peptide GFOGER for bone defect repair. Biomaterials 31, 2574-2582 

(2010). 

131. Hennessy, K.M. et al. The effect of collagen I mimetic peptides on mesenchymal 

stem cell adhesion and differentiation, and on bone formation at hydroxyapatite 

surfaces. Biomaterials 30, 1898-1909 (2009). 

132. Staatz, W.D. et al. Identification of a tetrapeptide recognition sequence for the 

alpha 2 beta 1 integrin in collagen. J Biol Chem 266, 7363-7367 (1991). 

133. McCann, T.J., Mason, W.T., Meikle, M.C. & McDonald, F. A collagen peptide 

motif activates tyrosine kinase-dependent calcium signalling pathways in human 

osteoblast-like cells. Matrix Biol 16, 273-283 (1997). 

134. Harbers, G.M. & Healy, K.E. The effect of ligand type and density on osteoblast 

adhesion, proliferation, and matrix mineralization. J Biomed Mater Res A 75, 855-

869 (2005). 

135. Bhatnagar, R.S., Qian, J.J. & Gough, C.A. The role in cell binding of a beta-bend 

within the triple helical region in collagen alpha 1 (I) chain: structural and 

biological evidence for conformational tautomerism on fiber surface. J Biomol 

Struct Dyn 14, 547-560 (1997). 



www.manaraa.com

110 

 

136. Bhatnagar, R.S. et al. Design of biomimetic habitats for tissue engineering with P-

15, a synthetic peptide analogue of collagen. Tissue Eng 5, 53-65 (1999). 

137. Nguyen, H., Qian, J.J., Bhatnagar, R.S. & Li, S. Enhanced cell attachment and 

osteoblastic activity by P-15 peptide-coated matrix in hydrogels. Biochem 

Biophys Res Commun 311, 179-186 (2003). 

138. Artzi, Z. et al. Histomorphometric evaluation of natural mineral combined with a 

synthetic cell-binding peptide (P-15) in critical-size defects in the rat calvaria. Int 

J Oral Maxillofac Implants 23, 1063-1070 (2008). 

139. Radhakrishnan, S. & Anusuya, C.N. Comparative clinical evaluation of 

combination anorganic bovine-derived hydroxyapatite matrix (ABM)/cell binding 

peptide (P-15) and open flap debridement (DEBR) in human periodontal osseous 

defects: a 6 month pilot study. J Int Acad Periodontol 6, 101-107 (2004). 

140. Bhongade, M.L. & Tiwari, I.R. A comparative evaluation of the effectiveness of 

an anorganic bone matrix/cell binding peptide with an open flap debridement in 

human infrabony defects: a clinical and radiographic study. J Contemp Dent Pract 

8, 25-34 (2007). 

141. Gomar, F., Orozco, R., Villar, J.L. & Arrizabalaga, F. P-15 small peptide bone 

graft substitute in the treatment of non-unions and delayed union. A pilot clinical 

trial. Int Orthop 31, 93-99 (2007). 

142. Pytela, R., Pierschbacher, M.D., Argraves, S., Suzuki, S. & Ruoslahti, E. 

Arginine-glycine-aspartic acid adhesion receptors. Methods Enzymol 144, 475-

489 (1987). 



www.manaraa.com

111 

 

143. Redick, S.D., Settles, D.L., Briscoe, G. & Erickson, H.P. Defining fibronectin's 

cell adhesion synergy site by site-directed mutagenesis. J Cell Biol 149, 521-527 

(2000). 

144. Ho, J.E., Barber, T.A., Virdi, A.S., Sumner, D.R. & Healy, K.E. The effect of 

enzymatically degradable IPN coatings on peri-implant bone formation and 

implant fixation. J Biomed Mater Res A 81, 720-727 (2007). 

145. Ferris, D.M. et al. RGD-coated titanium implants stimulate increased bone 

formation in vivo. Biomaterials 20, 2323-2331 (1999). 

146. Hennessy, K.M. et al. The effect of RGD peptides on osseointegration of 

hydroxyapatite biomaterials. Biomaterials 29, 3075-3083 (2008). 

147. Elmengaard, B., Bechtold, J.E. & Soballe, K. In vivo study of the effect of RGD 

treatment on bone ongrowth on press-fit titanium alloy implants. Biomaterials 26, 

3521-3526 (2005). 

148. Elmengaard, B., Bechtold, J.E. & Soballe, K. In vivo effects of RGD-coated 

titanium implants inserted in two bone-gap models. J Biomed Mater Res A 75, 

249-255 (2005). 

149. Schliephake, H. et al. Effect of RGD peptide coating of titanium implants on 

periimplant bone formation in the alveolar crest. An experimental pilot study in 

dogs. Clin Oral Implants Res 13, 312-319 (2002). 

150. Petrie, T.A. et al. The effect of integrin-specific bioactive coatings on tissue 

healing and implant osseointegration. Biomaterials 29, 2849-2857 (2008). 



www.manaraa.com

112 

 

151. Miljkovic, N.D. et al. Calcium aluminate, RGD-modified calcium aluminate, and 

beta-tricalcium phosphate implants in a calvarial defect. J Craniofac Surg 20, 

1538-1543 (2009). 

152. Garcia, A.J., Schwarzbauer, J.E. & Boettiger, D. Distinct activation states of 

alpha5beta1 integrin show differential binding to RGD and synergy domains of 

fibronectin. Biochemistry 41, 9063-9069 (2002). 

153. Pierschbacher, M.D. & Ruoslahti, E. Cell attachment activity of fibronectin can 

be duplicated by small synthetic fragments of the molecule. Nature 309, 30-33 

(1984). 

154. Petrie, T.A., Reyes, C.D., Burns, K.L. & Garcia, A.J. Simple application of 

fibronectin-mimetic coating enhances osseointegration of titanium implants. J 

Cell Mol Med (2008). 

155. Benoit, D.S. & Anseth, K.S. The effect on osteoblast function of colocalized RGD 

and PHSRN epitopes on PEG surfaces. Biomaterials 26, 5209-5220 (2005). 

156. Kim, T.I. et al. Design and biological activity of synthetic oligopeptides with Pro-

His-Ser-Arg-Asn (PHSRN) and Arg-Gly-Asp (RGD) motifs for human 

osteoblast-like cell (MG-63) adhesion. Biotechnology Letters 24, 2029-2033 

(2002). 

157. Healy, K.E., Rezania, A. & Stile, R.A. Designing biomaterials to direct biological 

responses. Ann N Y Acad Sci 875, 24-35 (1999). 

158. Rezania, A. & Healy, K.E. Integrin subunits responsible for adhesion of human 

osteoblast-like cells to biomimetic peptide surfaces. J Orthop Res 17, 615-623 

(1999). 



www.manaraa.com

113 

 

159. Rezania, A. & Healy, K.E. Biomimetic peptide surfaces that regulate adhesion, 

spreading, cytoskeletal organization, and mineralization of the matrix deposited 

by osteoblast-like cells. Biotechnol Prog 15, 19-32 (1999). 

160. Stile, R.A. & Healy, K.E. Thermo-responsive peptide-modified hydrogels for 

tissue regeneration. Biomacromolecules 2, 185-194 (2001). 

161. Schuler, M. et al. Comparison of the response of cultured osteoblasts and 

osteoblasts outgrown from rat calvarial bone chips to nonfouling KRSR and 

FHRRIKA-peptide modified rough titanium surfaces. J Biomed Mater Res B Appl 

Biomater 91, 517-527 (2009). 

162. Dee, K.C., Andersen, T.T. & Bizios, R. Design and function of novel osteoblast-

adhesive peptides for chemical modification of biomaterials. J Biomed Mater Res 

40, 371-377 (1998). 

163. Dettin, M. et al. Novel osteoblast-adhesive peptides for dental/orthopedic 

biomaterials. J Biomed Mater Res 60, 466-471 (2002). 

164. Hasenbein, M.E., Andersen, T.T. & Bizios, R. Micropatterned surfaces modified 

with select peptides promote exclusive interactions with osteoblasts. Biomaterials 

23, 3937-3942 (2002). 

165. Nelson, M., Balasundaram, G. & Webster, T.J. Increased osteoblast adhesion on 

nanoparticulate crystalline hydroxyapatite functionalized with KRSR. Int J 

Nanomedicine 1, 339-349 (2006). 

166. Balasundaram, G. & Webster, T.J. Increased osteoblast adhesion on nanograined 

Ti modified with KRSR. J Biomed Mater Res A 80, 602-611 (2007). 



www.manaraa.com

114 

 

167. Rapuano, B.E., Wu, C. & MacDonald, D.E. Osteoblast-like cell adhesion to bone 

sialoprotein peptides. J Orthop Res 22, 353-361 (2004). 

168. Dettin, M. et al. Evaluation of silicon dioxide-based coating enriched with 

bioactive peptides mapped on human vitronectin and fibronectin: in vitro and in 

vivo assays. Tissue Eng 12, 3509-3523 (2006). 

169. Bagno, A. et al. Human osteoblast-like cell adhesion on titanium substrates 

covalently functionalized with synthetic peptides. Bone 40, 693-699 (2007). 

170. Cacchioli, A., Ravanetti, F., Bagno, A., Dettin, M. & Gabbi, C. Human 

Vitronectin-Derived Peptide Covalently Grafted onto Titanium Surface Improves 

Osteogenic Activity: A Pilot In Vivo Study on Rabbits. Tissue Eng Part A 15, 

2917-2926 (2009). 

171. Dettin, M. et al. Covalent surface modification of titanium oxide with different 

adhesive peptides: surface characterization and osteoblast-like cell adhesion. J 

Biomed Mater Res A 90, 35-45 (2009). 

172. Shin, H., Zygourakis, K., Farach-Carson, M.C., Yaszemski, M.J. & Mikos, A.G. 

Attachment, proliferation, and migration of marrow stromal osteoblasts cultured 

on biomimetic hydrogels modified with an osteopontin-derived peptide. 

Biomaterials 25, 895-906 (2004). 

173. Kim, H.E., Kim, H.W. & Jang, J.H. Identification and characterization of a novel 

heparin-binding peptide for promoting osteoblast adhesion and proliferation by 

screening an Escherichia coli cell surface display peptide library. J Pept Sci 15, 

43-47 (2009). 



www.manaraa.com

115 

 

174. Aplin, A.E., Hogan, B.P., Tomeu, J. & Juliano, R.L. Cell adhesion differentially 

regulates the nucleocytoplasmic distribution of active MAP kinases. J Cell Sci 

115, 2781-2790 (2002). 

175. Guldberg, R.E., Lin, A.S., Coleman, R., Robertson, G. & Duvall, C. 

Microcomputed tomography imaging of skeletal development and growth. Birth 

defects research. Part C, Embryo today : reviews 72, 250-259 (2004). 

176. Buie, H.R., Campbell, G.M., Klinck, R.J., MacNeil, J.A. & Boyd, S.K. Automatic 

segmentation of cortical and trabecular compartments based on a dual threshold 

technique for in vivo micro-CT bone analysis. Bone 41, 505-515 (2007). 

177. Duvall, C.L., Taylor, W.R., Weiss, D., Wojtowicz, A.M. & Guldberg, R.E. 

Impaired angiogenesis, early callus formation, and late stage remodeling in 

fracture healing of osteopontin-deficient mice. J Bone Miner Res 22, 286-297 

(2007). 

178. Davey, R.A. et al. Decreased body weight in young Osterix-Cre transgenic mice 

results in delayed cortical bone expansion and accrual. Transgenic research 21, 

885-893 (2012). 

179. Aszodi, A., Hunziker, E.B., Brakebusch, C. & Fassler, R. Beta1 integrins regulate 

chondrocyte rotation, G1 progression, and cytokinesis. Genes Dev 17, 2465-2479 

(2003). 

180. Raducanu, A., Hunziker, E.B., Drosse, I. & Aszodi, A. Beta1 integrin deficiency 

results in multiple abnormalities of the knee joint. J Biol Chem 284, 23780-23792 

(2009). 



www.manaraa.com

116 

 

181. Blumbach, K. et al. Dwarfism in mice lacking collagen-binding integrins 

alpha2beta1 and alpha11beta1 is caused by severely diminished IGF-1 levels. J 

Biol Chem 287, 6431-6440 (2012). 

182. Popova, S.N. et al. Alpha11 beta1 integrin-dependent regulation of periodontal 

ligament function in the erupting mouse incisor. Molecular and cellular biology 

27, 4306-4316 (2007). 

183. Chang, D.D., Wong, C., Smith, H. & Liu, J. ICAP-1, a novel beta1 integrin 

cytoplasmic domain-associated protein, binds to a conserved and functionally 

important NPXY sequence motif of beta1 integrin. J Cell Biol 138, 1149-1157 

(1997). 

184. Millon-Fremillon, A. et al. Cell adaptive response to extracellular matrix density 

is controlled by ICAP-1-dependent beta1-integrin affinity. J Cell Biol 180, 427-

441 (2008). 

185. Bouvard, D. et al. Defective osteoblast function in ICAP-1-deficient mice. 

Development 134, 2615-2625 (2007). 

186. Schmidmaier, G., Schwabe, P., Strobel, C. & Wildemann, B. Carrier systems and 

application of growth factors in orthopaedics. Injury 39 Suppl 2, S37-43 (2008). 

187. Phelps, E.A. et al. Maleimide cross-linked bioactive PEG hydrogel exhibits 

improved reaction kinetics and cross-linking for cell encapsulation and in situ 

delivery. Advanced materials 24, 64-70, 62 (2012). 

188. Martino, M.M. et al. Engineering the growth factor microenvironment with 

fibronectin domains to promote wound and bone tissue healing. Science 

translational medicine 3, 100ra189 (2011). 



www.manaraa.com

117 

 

189. Atala, A., Kasper, F.K. & Mikos, A.G. Engineering complex tissues. Science 

translational medicine 4, 160rv112 (2012). 

190. Salinas, C.N. & Anseth, K.S. Mesenchymal stem cells for craniofacial tissue 

regeneration: designing hydrogel delivery vehicles. J Dent Res 88, 681-692 

(2009). 

191. Patterson, J. & Hubbell, J.A. SPARC-derived protease substrates to enhance the 

plasmin sensitivity of molecularly engineered PEG hydrogels. Biomaterials 32, 

1301-1310 (2011). 

192. Patterson, J. & Hubbell, J.A. Enhanced proteolytic degradation of molecularly 

engineered PEG hydrogels in response to MMP-1 and MMP-2. Biomaterials 31, 

7836-7845 (2010). 

193. Lutolf, M.P. et al. Synthetic matrix metalloproteinase-sensitive hydrogels for the 

conduction of tissue regeneration: engineering cell-invasion characteristics. Proc 

Natl Acad Sci U S A 100, 5413-5418 (2003). 

194. Fiedler, J., Roderer, G., Gunther, K.P. & Brenner, R.E. BMP-2, BMP-4, and 

PDGF-bb stimulate chemotactic migration of primary human mesenchymal 

progenitor cells. Journal of cellular biochemistry 87, 305-312 (2002). 

195. Chen, C., Uludag, H., Wang, Z. & Jiang, H. Noggin suppression decreases BMP-

2-induced osteogenesis of human bone marrow-derived mesenchymal stem cells 

in vitro. Journal of cellular biochemistry 113, 3672-3680 (2012). 

196. Lewandrowski, K.U., Nanson, C. & Calderon, R. Vertebral osteolysis after 

posterior interbody lumbar fusion with recombinant human bone morphogenetic 



www.manaraa.com

118 

 

protein 2: a report of five cases. The spine journal : official journal of the North 

American Spine Society 7, 609-614 (2007). 

197. Knox, J.B., Dai, J.M., 3rd & Orchowski, J. Osteolysis in transforaminal lumbar 

interbody fusion with bone morphogenetic protein-2. Spine 36, 672-676 (2011). 

198. Kaneko, H. et al. Direct stimulation of osteoclastic bone resorption by bone 

morphogenetic protein (BMP)-2 and expression of BMP receptors in mature 

osteoclasts. Bone 27, 479-486 (2000). 

199. Okamoto, M., Murai, J., Yoshikawa, H. & Tsumaki, N. Bone morphogenetic 

proteins in bone stimulate osteoclasts and osteoblasts during bone development. J 

Bone Miner Res 21, 1022-1033 (2006). 

200. Kanakaris, N.K. & Giannoudis, P.V. Clinical applications of bone morphogenetic 

proteins: current evidence. Journal of surgical orthopaedic advances 17, 133-146 

(2008). 

201. O'Brien, F.J., Harley, B.A., Yannas, I.V. & Gibson, L.J. The effect of pore size on 

cell adhesion in collagen-GAG scaffolds. Biomaterials 26, 433-441 (2005). 

202. Azad, V. et al. rhBMP-2 enhances the bone healing response in a diabetic rat 

segmental defect model. Journal of orthopaedic trauma 23, 267-276 (2009). 

203. Osbun, J.W. et al. A multicenter, single-blind, prospective randomized trial to 

evaluate the safety of a polyethylene glycol hydrogel (Duraseal Dural Sealant 

System) as a dural sealant in cranial surgery. World neurosurgery 78, 498-504 

(2012). 

204. Cosgrove, G.R. et al. Safety and efficacy of a novel polyethylene glycol hydrogel 

sealant for watertight dural repair. Journal of neurosurgery 106, 52-58 (2007). 



www.manaraa.com

119 

 

205. Street, J. et al. Vascular endothelial growth factor stimulates bone repair by 

promoting angiogenesis and bone turnover. Proc Natl Acad Sci U S A 99, 9656-

9661 (2002). 

206. Martino, M.M., Briquez, P.S., Ranga, A., Lutolf, M.P. & Hubbell, J.A. Heparin-

binding domain of fibrin(ogen) binds growth factors and promotes tissue repair 

when incorporated within a synthetic matrix. Proc Natl Acad Sci U S A 110, 

4563-4568 (2013). 

 

 

 


